Math, asked by Divya2321, 10 months ago

Simplify tan inverse of 2cosx-3sinx divided by 3cosx+2sinx

Answers

Answered by IamIronMan0
0

Answer:

 \tan {}^{ - 1} ( \frac{2 \cos(x) - 3 \sin(x)  }{3 \cos(x) + 2 \sin(x)  } )  \\  \\  =  \tan {}^{ - 1} ( \frac{2 - 3 \tan(x) }{3 + 2 \tan(x) } )  \\  \\  = \tan {}^{ - 1} ( \frac{ \frac{2}{3}  - \tan(x) }{1 +  \frac{2}{3} . \tan(x) } )  \\  \\ let \:  \:  tan \: \alpha  =  \frac{2}{3}  \\  \\  = \tan {}^{ - 1} ( \frac{ \tan( \alpha )  -  \tan(x) }{1 +  \tan( \alpha )  \tan(x) } )  \\  \\ =   \tan {}^{ - 1} ( \tan( \alpha  - x) )  \\  \\  =  \alpha  - x \\  \\  =  \tan {}^{ - 1} ( \frac{2}{3} )  - x

Similar questions