Math, asked by blue27942, 10 months ago

Simplify
12 ^{4}  \times 125 \times 3^{8} \div 6^{3}  \times 10^{3}  \times 3^{5}

Answers

Answered by Anonymous
2

Answer:

 {12}^{4}  \times 125 \times  {3}^{8}  \div  ({6}^{3}  \times  {10}^{3}  \times  {3}^{5}  )\\  =  > ( {(2 \times 3 \times 2)}^{4}  \times  {5}^{3}  \times  {3}^{8} ) \div ( {(2 \times 3)}^{3}  \times  {(5 \times 2)}^{3}  \times  {3}^{5} ) \\  =  >  {2}^{4}  \times  {3}^{4}  \times  {2}^{4}  \times  {5}^{3}  \times  {3}^{8}  \div ( {2}^{3}  \times  {3}^{3}  \times  {5}^{3}  \times  {2}^{3}  \times  {3}^{5} ) \\  =  >  {2}^{(4  + 4 - 3 - 3)}  \times  {3}^{(4 + 8 - 3 - 5)}  \times  {5}^{(3 - 3)}  \\  =  >  {2}^{2}  \times  {3}^{4}  \\  =  > 4 \times 81 \\  =  > 324

Thank you!!

_____________

Answered by BrainlyVirat
3

Question: Simplify.

12⁴ × 125 × 3^8 ÷ (6³ × 10³ × 3^5)

=> [2 × 3 × 2]⁴ × 5³ × 3^8 ÷ [(2×3)³ × (5×2)³ × 3^5]

=> 2⁴×3⁴×2⁴ × 5³ × 3^8 ÷ [2³ × 3³ × 5³ × 2³ × 3^5]

=> 2^(4+4-3-3) × 3^(4+8-3-5) × 5^(3-3)

=> 2² × 3⁴ × 1

=> 4 × 81

=> 324

Thus, Answer is 324.

Similar questions