Math, asked by pareetri, 2 months ago

Simplify
(4 \sqrt{3 }  - 2 \sqrt{2} )(4 \sqrt{3}  + 2 \sqrt{2} )

Answers

Answered by sandy1816
3

(4 \sqrt{3}  - 2 \sqrt{2} )(4 \sqrt{3}  + 2 \sqrt{2} ) \\ using \:  \:  {a}^{2}  -  {b}^{2}  = (a - b)(a + b) \\  = ( {4 \sqrt{3} })^{2}  - ( {2 \sqrt{2} })^{2}  \\  = 16 \times 3 - 4 \times 2 \\  = 48 - 8 \\  = 40

Answered by Anonymous
1

Answer :

\sf (4 \sqrt{3 } - 2 \sqrt{2} )(4 \sqrt{3} + 2 \sqrt{2} )

By using identity :

  • (a - b)(a + b) = a² - b²

\sf : \implies (4 \sqrt{3 } - 2 \sqrt{2} )(4 \sqrt{3} + 2 \sqrt{2} )= (4)^2 - (2\sqrt{2})^2

\sf : \implies (4 \sqrt{3 } - 2 \sqrt{2} )(4 \sqrt{3} + 2 \sqrt{2} )= 16 - 4 \times 2

\sf : \implies (4 \sqrt{3 } - 2 \sqrt{2} )(4 \sqrt{3} + 2 \sqrt{2} )= 16 - 8

\sf : \implies (4 \sqrt{3 } - 2 \sqrt{2} )(4 \sqrt{3} + 2 \sqrt{2} )= 8

Hence, Answer is 8.

Similar questions