Math, asked by varshu0512, 6 months ago

Simplify

4 \sqrt{81}  - 8 \sqrt[3]{343}  + 15 \sqrt[5]{32}  +  \sqrt{225}

Answers

Answered by Anonymous
3

4  \sqrt{81}  - 8 \sqrt[3]{343}  + 15 \sqrt[5]{32}  +  \sqrt{225}  \\  \\  = 4 \sqrt{( {9)}^{2} }  - 8 \sqrt[3]{ {(7)}^{3} }  + 15 \sqrt[5]{ {(2)}^{5} }  +  \sqrt{( {15)}^{2} }  \\  \\  = (4 \times 9) - (8 \times 7) + (15 \times 2) +  15 \\  \\  = 36 - 56 + 30 + 15 \\  \\  =  - 20 + 45 \\  \\  = 25

Answered by Anonymous
13

Answer:

25 is the simplified form

Step by step explanation:

\sf 4 \sqrt{81}  - 8 \sqrt[3]{343}  \: +  \: 15 \sqrt[5]{32}  +  \sqrt{225}

\sf 4 \sqrt{ {9}^{2} }  - 8 \sqrt[3]{ {7}^{3} }  + 15 \sqrt[5]{ {2}^{5} }  +  \sqrt{ {15}^{2} }

\sf 4(9) - 8(7) + 15(2) + 15

\sf 36 - 56 + 30 + 15

25

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

[ 15² = 15, As Square rooting and squaring are inverse operations of each other. Same goes for cubes, forth power, fifth power and so on. ]

Similar questions