Math, asked by karthikmadhur27, 8 months ago

Simplify:
(4 + \sqrt3)(4 - \sqrt3)

Answers

Answered by Asterinn
2

We have to simplify :-

(4 + \sqrt3)(4 - \sqrt3)

We know that -

 (a + b)(a - b) =  {a}^{2}  -  {b}^{2}

\implies(4 + \sqrt3)(4 - \sqrt3)

Now here a = 4 and b = √3

\implies(4 + \sqrt3)(4 - \sqrt3)  =  {4}^{2}  -  {( \sqrt{3}) }^{2}

\implies(4 + \sqrt3)(4 - \sqrt3)  =  16-  3

\implies(4 + \sqrt3)(4 - \sqrt3)  =  13

Answer : 13

_________________________

\large\bf\blue{Additional-Information}

\implies{(a+b)^2 = a^2 + b^2 + 2ab}

\implies{(a-b)^2 = a^2 + b^2 - 2ab}

\implies{(a+b)^3 = a^3 + b^3 + 3ab(a + b)}

\implies{(a-b)^3 = a^3 - b^3 - 3ab(a-b)}

\implies{(a^3+b^3)= (a+b)(a^2 - ab + b^2)}

\implies{(a^3-b^3)= (a-b)(a^2 + ab + b^2)}

_________________________

Similar questions