Math, asked by sameenakle, 1 month ago

simplify

7 + 3  \sqrt{5}
upon
7 - 3 \sqrt{5}
rationalise

Answers

Answered by Flaunt
6

\sf\huge {\underline{\underline{{Solution}}}}

\sf\implies \dfrac{7 + 3 \sqrt{5} }{7 - 3 \sqrt{5} }

Here,we will Multiply with opposite sign of denominator to both numerator and denominator.

\sf\implies \dfrac{7 + 3 \sqrt{5} }{7 - 3 \sqrt{5} }  \times  \dfrac{7 + 3 \sqrt{5} }{7 + 3 \sqrt{5} }

Here ,an identity is used :

\sf\:  \bold{{(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy}

\sf \:  \bold{ {x}^{2}  -  {y}^{2}  = (x + y)(x - y)}

\sf\implies \dfrac{ {(7 + 3 \sqrt{5} )}^{2} }{ {7}^{2}  -  {(3 \sqrt{5}) }^{2} }  =  \dfrac{ {7}^{2}  + 2(7)(3 \sqrt{5}) +  {(3 \sqrt{5}) }^{2}  }{ {7}^{2}  -  {(3 \sqrt{5}) }^{2} }

\sf\implies \dfrac{49  + 2(7)(3 \sqrt{5})  + 45}{49 - 45}

\sf\implies \dfrac{94 + 42 \sqrt{5} }{4}

Taking 2 common:

\sf\implies \dfrac{ 2(47 + 21 \sqrt{5} )}{4}

\sf \:  =  \dfrac{47 + 21 \sqrt{5} }{2}

Extra information=>

Rationalisation is a method of removing root values from denominator and shifts towards numerator.

Rationalisation is used to simplify the fractional root values.

Similar questions