Math, asked by omiriceu, 2 months ago

simplify
 {8}^{\frac{2}{3} }  -  \sqrt{9}  \times  {10}^{0}  +  {144}^{ \frac{1}{2} }
spam answers will be reported ​

Answers

Answered by daisyDrishti
3

 =  {8}^{\frac{2}{3} } - \sqrt{9} \times {10}^{0} + {144}^{ \frac{1}{2} } \\  =    {({2}^{3} )}^{ \frac{2}{3} }  -  {9}^{ \frac{1}{2} }  \times 1 +   {({12}^{2} )}^{ \frac{1}{2} }  \\  =  {2}^{3 \times  \frac{2}{3} }  -  {3}^{2 \times  \frac{1}{2} }  \times 1 +  {12}^{2 \times  \frac{1}{2} }  \\  =  {2}^{2}  - 3 \times 1 + 12 \\  = 4 - 3 + 12 = 16 - 3 = 13

hope it will help u☺️

Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Solution-} \\

{8}^{ \frac{2}{3} }  -  \sqrt{9} ( {10)}^{0}  +  \bigg( \frac{1}{144}  \bigg) ^{ -  \frac{1}{2} }  \\

 = ( {8}^{2}  {)}^{ \frac{1}{3} } - 3(1) +  \frac{1}{ \bigg( \frac{1}{144}  \bigg) ^{ \frac{1}{2} } }   \\

 =  \sqrt[3]{64}  - 3 +  \frac{1}{ \left \{ \bigg( \frac{1}{12}  \bigg) ^{2} \right \}^{ \frac{1}{2} }  }  \\

 =  \sqrt[3]{4 \times 4 \times 4}  - 3 +  \frac{1}{\bigg( \frac{1}{12}  \bigg)}  \\

 = 4 - 3 + 12 \\

 =  \boxed{13  \: \bf{Ans.}} \\

Similar questions