Math, asked by Anonymous, 3 months ago

Simplify -
\bf \:  \dfrac{3}{ \sqrt{5} \:  +  \sqrt{2}} \:  -  \:  \dfrac{2}{ \sqrt{7} \:  +  \sqrt{5}} \:  +  \:  \dfrac{5}{ \sqrt{7} \:   -  \:  \sqrt{2} } \\

Answers

Answered by Sankalp050
35

Answer:

\bf \: \dfrac{3}{ \sqrt{5} \: + \sqrt{2}} \: - \: \dfrac{2}{ \sqrt{7} \: + \sqrt{5}} \: + \: \dfrac{5}{ \sqrt{7} \: - \: \sqrt{2} } \\  \\

First of all we will rationalise each fractions separately.

 \frac{3}{ \sqrt{5} +  \sqrt{2}  }  \\  \\ multiplying \: the \: numerator \: and \: denominator \: by \: the \: conjugate \: of \: denominator

 =  \frac{3}{ \sqrt{5}  +  \sqrt{2} }  \times  \frac{ \sqrt{5}  -  \sqrt{2} }{ \sqrt{5}  -  \sqrt{2} }  \\  \\  =  \frac{3( \sqrt{5} -  \sqrt{2})  }{ {( \sqrt{5} )}^{2}  -  {( \sqrt{2} )}^{2} }  \\  \\  =  \frac{3 ( \sqrt{5} -  \sqrt{2}   )}{5 - 2}  \\  \\  =  \frac{3( \sqrt{5}  -  \sqrt{2} )}{3}  \\  \\   \large{=  \sqrt{5}  -  \sqrt{2} }

 \frac{2}{ \sqrt{7} +  \sqrt{5}  }  \\  \\ rationalising \: the \: denominator

 =  \frac{2}{ \sqrt{7} +  \sqrt{5}  }  \times  \frac{ \sqrt{7} -   \sqrt{5} }{ \sqrt{7}  -  \sqrt{5} }  \\  \\  =  \frac{2( \sqrt{7} -  \sqrt{5}  )}{ {( \sqrt{7}) }^{2} -  {( \sqrt{5}) }^{2}  }  \\  \\  =  \frac{2( \sqrt{7}  -  \sqrt{5} )}{7 - 5}  \\  \\  \frac{2( \sqrt{7} -  \sqrt{5})  }{2}  \\  \\   \large{=  \sqrt{7}  -  \sqrt{5} }

 \frac{5}{ \sqrt{7}  -  \sqrt{2} }  \\  \\ rationalizing \: the \: denominator

 =  \frac{5}{ \sqrt{7}  -  \sqrt{2} }  \times  \frac{ \sqrt{7} +  \sqrt{2}  }{ \sqrt{7} +  \sqrt{2}  }  \\  \\  =  \frac{5( \sqrt{7} +  \sqrt{2}  )}{ {( \sqrt{7} )}^{2} -  {( \sqrt{2} )}^{2}  }  \\  \\  =  \frac{5( \sqrt{7} +  \sqrt{2}  )}{7 - 2} \\  \\  =  \frac{5( \sqrt{7}  +  \sqrt{2} )}{5}  \\  \\  =  \sqrt{7}  +  \sqrt{2}

Now putting the rationalised fractions in

\bf \: \dfrac{3}{ \sqrt{5} \: + \sqrt{2}} \: - \: \dfrac{2}{ \sqrt{7} \: + \sqrt{5}} \: + \: \dfrac{5}{ \sqrt{7} \: - \: \sqrt{2} }

We get;

 = ( \sqrt{5}  -  \sqrt{2} ) - ( \sqrt{7}  -  \sqrt{5} ) + ( \sqrt{7}  +  \sqrt{2} ) \\  \\  =  \sqrt{5}    \:  \:  { \cancel{ - \sqrt{2} }} \:  \:  \cancel{ -  \sqrt{7}  }+  \sqrt{5}  +  \:  \:  \cancel{ \sqrt{7}  }+   \:  \:  \cancel{\sqrt{2} } \\  \\  \\  =  \sqrt{5}  +  \sqrt{5}  \\  \\  \\ { \large{ \blue{ = 2 \sqrt{5} }}}

 \huge{thus}

{ \huge{ \boxed{\bf \: \dfrac{3}{ \sqrt{5} \: + \sqrt{2}} \: - \: \dfrac{2}{ \sqrt{7} \: + \sqrt{5}} \: + \: \dfrac{5}{ \sqrt{7} \: - \: \sqrt{2} } = 2 \sqrt{5} }}}

Answered by Anonymous
87

Question:-

To simplify:-

  • \sf{\dfrac{3}{\sqrt{5} + \sqrt{2}} - \dfrac{2}{\sqrt{7} + \sqrt{5}} + \dfrac{5}{\sqrt{7} - \sqrt{2}}}

Solution:-

\sf{\dfrac{3}{\sqrt{5} + \sqrt{2}} - \dfrac{2}{\sqrt{7} + \sqrt{5}} + \dfrac{5}{\sqrt{7} - \sqrt{2}}\longrightarrow{(i)}}

Let us rationalize all the terms separately,

\sf{For,\: \dfrac{3}{\sqrt{5} + \sqrt{2}}}

By rationalizing the denominator,

=\sf{\dfrac{3}{\sqrt{5} + \sqrt{2}} \times \dfrac{\sqrt{5} - \sqrt{2}}{\sqrt{5} - \sqrt{2}}}

=\sf{\dfrac{3(\sqrt{5} - \sqrt{2})}{(\sqrt{5} + \sqrt{2})(\sqrt{5} - \sqrt{2})}}

Applying the identity in the denominator:-

\boxed{\underline{\red{\rm{(a + b)(a - b) = a^2 - b^2}}}}

=\sf{\dfrac{3(\sqrt{5} - \sqrt{2})}{(\sqrt{5})^2 - (\sqrt{2})^2}}

=\sf{\dfrac{3(\sqrt{5} - \sqrt{2})}{5 - 2}}

=\sf{\dfrac{3(\sqrt{5} - \sqrt{2})}{3}}

=\sf{\dfrac{\not{3}(\sqrt{5} - \sqrt{2})}{\not{3}}}

\blue{\boxed{\underline{\pink{\rm{\therefore\:\dfrac{3}{\sqrt{5} + \sqrt{2}} = \sqrt{5} - \sqrt{2}}}}}}

\sf{For,\:\dfrac{2}{\sqrt{7} + \sqrt{5}}}

By rationalizing the denominator,

=\sf{\dfrac{2}{\sqrt{7} + \sqrt{5}}\times \dfrac{\sqrt{7} - \sqrt{5}}{\sqrt{7} - \sqrt{5}}}

=\sf{\dfrac{2(\sqrt{7} - \sqrt{5})}{(\sqrt{7} + \sqrt{5})(\sqrt{7} - \sqrt{5})}}

=\sf{\dfrac{2(\sqrt{7} - \sqrt{5})}{(\sqrt{7})^2 - (\sqrt{5})^2}}

=\sf{\dfrac{2(\sqrt{7} - \sqrt{5})}{7 - 5}}

=\sf{\dfrac{2(\sqrt{7} - \sqrt{5})}{2}}

=\sf{\dfrac{\not{2}(\sqrt{7} - \sqrt{5})}{\not{2}}}

\red{\boxed{\underline{\orange{\rm{\therefore\:\dfrac{2}{\sqrt{7} + \sqrt{5}} = \sqrt{7} - \sqrt{5}}}}}}

\sf{For,\:\dfrac{5}{\sqrt{7} - \sqrt{2}}}

By rationalizing the denominator,

=\sf{\dfrac{5}{\sqrt{7} - \sqrt{2}}\times \dfrac{\sqrt{7} + \sqrt{2}}{\sqrt{7} + \sqrt{7}}}

=\sf{\dfrac{5(\sqrt{7} + \sqrt{2})}{(\sqrt{7} - \sqrt{2})(\sqrt{7} + \sqrt{2})}}

=\sf{\dfrac{5(\sqrt{7} + \sqrt{2})}{(\sqrt{7})^2 - (\sqrt{2})^2}}

=\sf{\dfrac{5(\sqrt{7} + \sqrt{2})}{7 - 2}}

=\sf{\dfrac{5(\sqrt{7} + \sqrt{2})}{5}}

=\sf{\dfrac{\not{5}(\sqrt{7} + \sqrt{2})}{\not{5}}}

\purple{\boxed{\underline{\green{\rm{\therefore\:\dfrac{5}{\sqrt{7} - \sqrt{2}} = \sqrt{7} + \sqrt{2}}}}}}

Putting all the values in (i)

= (√5 - √2) - (√7 - √5) + (√7 + √2)

= √5 - √2 - √7 + √5 + √7 + √2

= √5 + √5 - √2 + √2 - √7 + √7

= 2√5

\boxed{\underline{\rm{\red{\therefore\:\dfrac{3}{\sqrt{5} + \sqrt{2}} - \dfrac{2}{\sqrt{7} + \sqrt{5}} + \dfrac{5}{\sqrt{7} - \sqrt{2}} = 2\sqrt{5}}}}}

______________________________________


Anonymous: Nicëêèēé
Anonymous: Thank you! ^^
Similar questions