Math, asked by ajjubhaii94, 7 months ago

Simplify :
 \bold{ \frac{10 \times  {5}^{n + 1} + 25 \times  {5}^{n}  }{3 \times  {5}^{n + 2}  + 10 \times  {5}^{n + 1} } }

Answers

Answered by gitanjali4922
11

  \huge \underline\bold\color{red}{†SolutioN†}

\color{black}\bold</p><p>{ \frac{10 \times  {5}^{n + 1}  + 25 \times  {5}^{n} }{3 \times  {5}^{n + 2} + 2   \times  {5}^{n + 2}  } }

\color{black}\bold</p><p>{  = \frac{2 \times 5 \times  {5}^{n + 1}  +  {5}^{2}  \times  {5}^{n} }{3 \times  {5}^{n + 2} + 2 \times 5 \times  {5}^{n + 1}  }  }

\color{black}\bold</p><p>{ =   \frac{ {2 \times 5}^{n + 1 + 1}  +  {5}^{n + 2} }{3 \times  {5}^{n + 2}  + 2 \times  {5}^{n + 1 + 1} } }

\color{black}\bold</p><p>{ =  \frac{2 \times  {5}^{n + 2}   +  {5}^{n + 2} }{3 \times  {5}^{n + 2}  + 2 \times  {5}^{n + 2} } }

\color{black}\bold</p><p>{ =  \frac{ {5}^{n + 2}(2 + 1) }{ {5}^{n + 2} (3 + 2)} }

\color{black}\bold</p><p>{ =  \frac{2 + 1}{3 + 2} }

\color{black}\bold</p><p>{ =  \frac{3}{5} }

{ \boxed{∵ \: require d \: ans =  \frac{3}{5} }}</p><p>

Similar questions