Math, asked by BeIuga, 1 day ago


Simplify

\cos \theta\left[\begin{array}{c c c} \cos \theta& \sin \theta \\ & & \\ - \sin \theta & \cos \theta &\end{array}\right] + \sin \theta\left[\begin{array}{c c c} \sin \theta& - \cos\theta \\ & & \\ \cos\theta & \sin\theta & \end{array}\right]

Answers

Answered by mokshjoshi
0

Answer:

P=2(l+w)

l Length

10

w Width

Step-by-step explanation:

Simplify

\begin{gathered}\cos \theta\left[\begin{array}{c c c} \cos \theta& \sin \theta \\ & & \\ - \sin \theta & \cos \theta &\end{array}\right] + \sin \theta\left[\begin{array}{c c c} \sin \theta& - \cos\theta \\ & & \\ \cos\theta & \sin\theta & \end{array}\right] \end{gathered}

cosθ

cosθ

−sinθ

sinθ

cosθ

+sinθ

sinθ

cosθ

−cosθ

sinθ

Answered by nihasrajgone2005
2

\huge\red{A}\pink{N}\orange{S} \green{W}\blue{E}\gray{R} =

 \cos 0  +   \sin 0

Attachments:
Similar questions