Simplify:
Answers
Answer:
Sin²x
Step-by-step explanation:
tan(x - π/2) = -tan(π/2 -x) = -Cotx
cos(3π/2 + x) = Cos(x - π/2) = Cos(π/2 -x) = Sinx
Sin(7π/2 - x) = Sin(-π/2 - x) = - Sin(π/2 + x) = -Cosx
Sin³(7π/2 - x) = -Cos³x
Cos(x - π/2) = Cos(π/2 -x) = Sinx
tan(3π/2 + x) = tan(x - π/2) = -tan(π/2 - x) = - cotx
(-Cotx Sinx -( -Cos³x) ) / (Sinx (- cotx)
Cotx.Sinx = Cotx ( cosx . Tanx) = Cosx
= (-Cosx + Cos³x)/(-cosx)
= 1 - Cos²x
= Sin²x
Answer:
sin²x
Step-by-step explanation:
=> tan(x - π/2) = - tan(π/2 - x) = - cot x
.°. tan(x - π/2) = - cot x
=> cos(3π/2 + x) = cos(x - π/2) = cos(π/2 - x) = sin x
.°. cos(3π/2 + x) = sin x
=> sin(7π/2 - x) = sin(-π/2 - x) = - sin(π/2 - x) = - cos x
.°. sin³(7π/2 - x) = - cos³ x
=> cos(x - π/2) = cos(π/2 - x) = sin x
.°. cos(x - π/2) = sin x
=> tan(3π/2 + x) = tan(x - π/2) = - tan(π/2 - x) = - cot x
.°. tan(3π/2 + x) = - cot x
Now,
=> (- cot x). sin x + cos³x / sin x.(- cot x)
=> - cos x + cos³x / - cos x
=> (1 - cos²x)
=> sin²x ANSWER