Math, asked by luk3004, 7 hours ago

Simplify [\frac{15^\frac{1}{4} }{3^\frac{1}{2} }]

Answers

Answered by YourHelperAdi
4

To Find :

The value of :

 \tt{ \frac{ {15}^{ \frac{1}{4} } }{ {3}^{ \frac{1}{2} } } }

Solution :

 \large\tt{ \frac{ {15}^{ \frac{1}{4} } }{ {3}^{ \frac{1}{2} } } }

 \large{\tt{ \implies  \frac{ {3}^{ \frac{1}{4} }  \times  {5}^{ \frac{1}{4} } }{ {3}^{ \frac{1}{2} }  } }}

 \large{\tt{ \implies  \frac{ {3}^{ \frac{1}{4} } }{ {3}^{ \frac{1}{2} } } \times  {5}^{ \frac{1}{4} } } }

Using the identity:

A²÷A³ = A²-³ , we get

 \large\tt{ \implies  {3}^{ \frac{1}{4}  -  \frac{1}{2} }  \times  {5}^{ \frac{1}{4} } }

 \implies \large\tt{ {3}^{ \frac{ - 1}{4} } \times  {5}^{ \frac{1}{4} }  }

 \large\tt{ \implies  {( {3}^{ - 1}  \times 5)}^{ \frac{1}{4} }}

 \large\implies \tt{ {( \frac{5}{3}) }^{ \frac{1}{4} } }

Hence,

 \large{\implies \tt{ \frac{ {15}^{ \frac{1}{4} } }{ {3}^{ \frac{1}{2} } }  =  {( \frac{5}{3} )}^{ \frac{1}{4} } }}

Hence, This is your solution.

Similar questions