Math, asked by pranavdhawlepatil08, 1 year ago

Simplify
 \frac{2 +  \sqrt{3} } {2 -  \sqrt{3} }  -  \frac{2 -  \sqrt{3} }{2 +  \sqrt{3} }

Answers

Answered by Anonymous
49

 \sf given  : -   \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  -  \frac{2 -  \sqrt{3} }{2 +  \sqrt{3} }  \\  \\  \small \sf =  \frac{(2 +  \sqrt{3} )(2 +  \sqrt{3}) }{(2   -  \sqrt{3})(2  +  \sqrt{3} ) }  -  \frac{(2 -  \sqrt{3})(2 -  \sqrt{3}  )}{(2 -  \sqrt{3})(2   +  \sqrt{3})  }  \\  \\  \sf =  \frac{{(2 +  \sqrt{3} )}^{2} }{( {2)}^{2} - ( { \sqrt{3} })^{2}  }  -  \frac{ {(2 -  \sqrt{3} })^{2} }{( {2)}^{2} - ( { \sqrt{3} )}^{2}  }  \\  \\   \sf =  \frac{( {2)}^{2}  + 2(2)( \sqrt{3}) +  {( \sqrt{3} })^{2}  }{4 - 3}  -  \\ \sf  \frac{( {2)}^{2} -  2(2)( \sqrt{3} ) + ( { \sqrt{3} )}^{2}  }{4 - 3}  \\  \\  \sf =  \frac{4 + 4 \sqrt{3}  + 3}{1}  -   \frac{4 - 4 \sqrt{3}  + 3}{1}  \\  \\  \sf = \cancel4 +  4 \sqrt{3}  + \cancel 3  \cancel{- 4} + 4 \sqrt{3}   \cancel {- 3} \\  \\  \sf  =  \boxed{8 \sqrt{3}}

identities used :-

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • (a + b)(a - b) = a² - b²

Answered by Anonymous
54

\dfrac{2 \:  +  \:  \sqrt{3} }{2 \:  -  \:  \sqrt{3} }  \:  -  \:  \dfrac{2 \:  -  \:  \sqrt{3} }{2 \:  +  \:  \sqrt{3} }

____________ [ GIVEN ]

• We have to simply it.. means we have to find the value of x.

____________________________

=> \dfrac{2 \:  +  \:  \sqrt{3} }{2 \:  -  \:  \sqrt{3} }  \:  -  \:  \dfrac{2 \:  -  \:  \sqrt{3} }{2 \:  +  \:  \sqrt{3} }

=> \frac{2 \:  +  \:  \sqrt{3} }{2 \:  -  \:  \sqrt{3} }  \: \times  \:  \frac{2 \:  +  \:  \sqrt{3} }{2 \:  +  \:  \sqrt{3} }   -  \:  \frac{2 \:  -  \:  \sqrt{3} }{2 \:  +  \:  \sqrt{3} }  \:  \times  \:  \frac{2 \:  -  \:  \sqrt{3} }{2 \:  -  \:  \sqrt{3} }

Now..

(a + b) (a + b) = a² + b² + 2ab

(a - b) (a + b) = a² - b²

=> \dfrac{(2 \:  +  \:  \sqrt{3})^{2}  }{ {(2)}^{2} \:  -  \:  (\sqrt{3}) ^{2}  }  \:    -  \:  \dfrac{(2 \:  -  \:  \sqrt{3} )^{2}  }{ {(2)}^{2} \:  -  \:  (\sqrt{3})^{2}  }

=> \dfrac{(2 )^{2}  \:  +  \:  (\sqrt{3})^{2}   \:  +  \: 2(2)( \sqrt{3}) }{ 4\:  -  \:  3  }  \:    -  \:  \dfrac{(2 )^{2}  \:   +  \:  (\sqrt{3} )^{2}  \:  - 2(2)( \sqrt{3} ) }{ 4\:  -  \:  3  }

=> \dfrac{(2 )^{2}  \:  +  \:  (\sqrt{3})^{2}   \:  +  \: 2(2)( \sqrt{3}) }{ 1 }  \:    -  \:  \dfrac{(2 )^{2}  \:   +  \:  (\sqrt{3} )^{2}  \:  - 2(2)( \sqrt{3} ) }{ 1  }

=> 4 + 3 + 4√3 - (4 + 3 - 4√3)

=> 4 + 3 + 4√3 - 4 - 3 + 4√3

=> 4√3 + 4√3

=> 8√3

_____________________________

8√3 is the answer.

_______________

_____________________________

Similar questions