Math, asked by debdasroy786p92692, 9 months ago

simplify:-
 \frac{2 +  \sqrt{3} }{2 - \sqrt{3} } -  \frac{2 -  \sqrt{3} }{2 +  \sqrt{3} }
please solve this​

Answers

Answered by umiko28
2

Answer:

\huge\underline{ \underline{ \red{your \: \: answer}}}

Step-by-step explanation:

 \sf\pink{ \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} } -  \frac{2 -  \sqrt{3} }{2 +  \sqrt{3} }  } \\  \sf\pink{  =  > \frac{(2 +  \sqrt{3} )(2 +  \sqrt{3} ) - (2 -  \sqrt{3} )(2 +  \sqrt{3} )}{(2 -  \sqrt{3} )(2 +  \sqrt{3} )} } \\  \sf\pink{ =  >  \frac{ {(2 +  \sqrt{3} )}^{2} -  {(2 -  \sqrt{3} )}^{2}  }{ {2}^{2}  -  { \sqrt{3} }^{2} } } \\  \sf\pink{ =  >  \frac{(4 + 3 + 2 \sqrt{3 }) - (4 + 3 - 2 \sqrt{3} ) }{4 - 3} } \\  \sf\pink{ =  >  \frac{4 + 3 + 2 \sqrt{3  }  - 4 - 3  + 2 \sqrt{3} }{1} } \\  \sf\pink{ =  > 7 - 7 + 4 \sqrt{3} } \\  \sf\pink{ =  > 4 \sqrt{3} } \\ \large\boxed{ \fcolorbox{blue}{purple}{hope \: it \: help \: you}}

Similar questions