Math, asked by samyaksh, 1 year ago

simplify \frac{5a^3b-3ab^2}{3b^2-5a^2b}

Answers

Answered by AbhijithPrakash
5

Answer:

\dfrac{5a^3b-3ab^2}{3b^2-5a^2b}=-a

Step-by-step explanation:

\dfrac{5a^3b-3ab^2}{3b^2-5a^2b}

\mathrm{Factor}\:5a^3b-3ab^2

5a^3b-3ab^2

\gray{\mathrm{Apply\:exponent\:rule}:\quad \:a^{b+c}=a^ba^c}

\gray{a^3=aa^2,\:b^2=bb}

=5aa^2b-3abb

\gray{\mathrm{Factor\:out\:common\:term\:}ba}

=ba\left(5a^2-3b\right)

=\dfrac{ba\left(5a^2-3b\right)}{3b^2-5a^2b}

\mathrm{Factor}\:3b^2-5a^2b

3b^2-5a^2b

\gray{\mathrm{Apply\:exponent\:rule}:\quad \:a^{b+c}=a^ba^c}

\gray{b^2=bb}

=3bb-5a^2b

\gray{\mathrm{Factor\:out\:common\:term\:}b}

=b\left(3b-5a^2\right)

=\dfrac{ba\left(5a^2-3b\right)}{b\left(3b-5a^2\right)}

\mathrm{Cancel\:}\dfrac{ba\left(5a^2-3b\right)}{b\left(3b-5a^2\right)}

\dfrac{ba\left(5a^2-3b\right)}{b\left(3b-5a^2\right)}

\gray{3b-5a^2\:=\:-\left(5a^2-3b\right)}

=\dfrac{ab\left(5a^2-3b\right)}{-b\left(5a^2-3b\right)}

\gray{\mathrm{Refine}}

=-\dfrac{ba\left(5a^2-3b\right)}{b\left(5a^2-3b\right)}

\gray{\mathrm{Cancel\:the\:common\:factor:}\:b}

=-\dfrac{a\left(5a^2-3b\right)}{5a^2-3b}

\gray{\mathrm{Cancel\:the\:common\:factor:}\:5a^2-3b}

=-a

Similar questions