Math, asked by parthanathroy, 10 months ago

Simplify:-
 \frac{7 + 3 \sqrt{5} }{7 - 3 \sqrt{5} }

Answers

Answered by harshkvardhan93
1

Answer:

 \frac{47 - 21 \sqrt{5} }{2}

Step-by-step explanation:

ATQ,

 \frac{7 + 3 \sqrt{5} }{7 - 3 \sqrt{5} }

So, we need to rationalize this equation

\frac{7 + 3 \sqrt{5} }{7 - 3 \sqrt{5} }  \times  \frac{7 + 3 \sqrt{5} }{7 + 3 \sqrt{5} } \:

Multiplying both parts of fraction

\frac{ {(7 + 3 \sqrt{5} )}^{2} }{(7 + 3 \sqrt{5})(7 - 3 \sqrt{5} ) } \:

Applying the 1st and 3rd identity

 \frac{ {7}^{2} + 2(7 \times 3 \sqrt{5}) +  {(3 \sqrt{5} )}^{2}   }{ {7}^{2}  -  {(3 \sqrt{5}) }^{2} }

Simplifying

 \frac{49 + 42 \sqrt{5} + 45 }{49 - 45}

Further simplifying

 \frac{94  +  42 \sqrt{5} }{4 }

Still further simplifying

 \frac{2(47 - 21 \sqrt{5}) }{4}

Further simplifying, we get

 \frac{47 - 21 \sqrt{5} }{2}

Please check the answer. I may know the method, but the equations may themselves be incorrect.

Similar questions