Math, asked by OreoMagie, 20 days ago

simplify : ​

\frac{7 + \sqrt{8}}{7 - \sqrt{8}} + \frac{7 - \sqrt{8}}{7 + \sqrt{8}}

---> No spamming❌
---> Step by step solution needed✔️ ​​

Answers

Answered by CopyThat
33

Step-by-step explanation:

We have,

\rightarrow \bold{\dfrac{7+\sqrt{8} }{7-\sqrt{8} }\times\dfrac{7-\sqrt{8} }{7+\sqrt{8} }  }

Rationalizing \bold{\dfrac{7+\sqrt{8} }{7-\sqrt{8} }} :

\rightarrow \bold{\dfrac{7+\sqrt{8} }{7-\sqrt{8} }\times\dfrac{7+\sqrt{8} }{7+\sqrt{8} }  }

\rightarrow \bold{\dfrac{(7+\sqrt{8})^2 }{(7)^2-(\sqrt{8})^2 } }

Since :

  • (a + b)² = a² + b² + 2ab
  • (a + b)(a - b) = a² - b²

\rightarrow \bold{\dfrac{7^2+(\sqrt{8})^2+2(7)(\sqrt{8})  }{7^2-\sqrt{8}^2 } }

\rightarrow \bold{\dfrac{49+8+14\sqrt{8} }{49-8} }

Since :

  • √8 × √8
  • √64
  • 8

\rightarrow \bold{\dfrac{57+14\sqrt{8} }{41} }  - (1)

Rationalizing \bold{\dfrac{7-\sqrt{8} }{7+\sqrt{8} }} :

\rightarrow \bold{\dfrac{7-\sqrt{8} }{7+\sqrt{8} } \times\dfrac{7-\sqrt{8} }{7-\sqrt{8} } }

Similarly from above we get :

\rightarrow \bold{\dfrac{(7-\sqrt{8})^2 }{(7+\sqrt{8}) (7-\sqrt{8}) } }

\rightarrow \bold{\dfrac{57-14\sqrt{8} }{41} } - (2)

Same denominator so add (1) and (2) :

\rightarrow \bold{\dfrac{57+14\sqrt{8} }{41} +\dfrac{57-14\sqrt{8} }{41} }

Taking L.C.M we get :

\rightarrow \bold{\dfrac{57+14+57-14\sqrt{8} } {41} }

\rightarrow \bold{\dfrac{114+14\sqrt{8}-14\sqrt{8}  }{41} }

\rightarrow \bold{\dfrac{114}{41} }

∴ 114/41 is the simplified value.

Answered by XxTheCozyVibexX
5

Answer:

Hayeeeee jaaaan(。♡‿♡。)

__________________

Vidu here⊂(◉‿◉)つ

Similar questions