Math, asked by neelam8713, 11 months ago

Simplify \frac{\sin ^4\left(x\right)-\cos ^4\left(x\right)}{\sin ^2\left(x\right)-\cos ^2\left(x\right)}

Answers

Answered by AbhijithPrakash
3

Answer:

\dfrac{\sin ^4\left(x\right)-\cos ^4\left(x\right)}{\sin ^2\left(x\right)-\cos ^2\left(x\right)}=1

Step-by-step explanation:

\dfrac{\sin ^4\left(x\right)-\cos ^4\left(x\right)}{\sin ^2\left(x\right)-\cos ^2\left(x\right)}

\mathrm{Factor}\:\sin ^4\left(x\right)-\cos ^4\left(x\right):\quad \left(\sin ^2\left(x\right)+\cos ^2\left(x\right)\right)\left(\sin \left(x\right)+\cos \left(x\right)\right)\left(\sin \left(x\right)-\cos \left(x\right)\right)

\sin ^4\left(x\right)-\cos ^4\left(x\right)

\mathrm{Apply\:exponent\:rule}:\quad \:a^{bc}=\left(a^b\right)^c

\sin ^4\left(x\right)=\left(\sin ^2\left(x\right)\right)^2

=\left(\sin ^2\left(x\right)\right)^2-\cos ^4\left(x\right)

\mathrm{Apply\:exponent\:rule}:\quad \:a^{bc}=\left(a^b\right)^c

\cos ^4\left(x\right)=\left(\cos ^2\left(x\right)\right)^2

=\left(\sin ^2\left(x\right)\right)^2-\left(\cos ^2\left(x\right)\right)^2

\mathrm{Apply\:Difference\:of\:Two\:Squares\:Formula:\:}x^2-y^2=\left(x+y\right)\left(x-y\right)

\left(\sin ^2\left(x\right)\right)^2-\left(\cos ^2\left(x\right)\right)^2=\left(\sin ^2\left(x\right)+\cos ^2\left(x\right)\right)\left(\sin ^2\left(x\right)-\cos ^2\left(x\right)\right)

=\left(\sin ^2\left(x\right)+\cos ^2\left(x\right)\right)\left(\sin ^2\left(x\right)-\cos ^2\left(x\right)\right)

\mathrm{Factor}\:\sin ^2\left(x\right)-\cos ^2\left(x\right)

\sin ^2\left(x\right)-\cos ^2\left(x\right)

\mathrm{Apply\:Difference\:of\:Two\:Squares\:Formula:\:}x^2-y^2=\left(x+y\right)\left(x-y\right)

\sin ^2\left(x\right)-\cos ^2\left(x\right)=\left(\sin \left(x\right)+\cos \left(x\right)\right)\left(\sin \left(x\right)-\cos \left(x\right)\right)

=\left(\sin \left(x\right)+\cos \left(x\right)\right)\left(\sin \left(x\right)-\cos \left(x\right)\right)

=\left(\sin ^2\left(x\right)+\cos ^2\left(x\right)\right)\left(\sin \left(x\right)+\cos \left(x\right)\right)\left(\sin \left(x\right)-\cos \left(x\right)\right)

=\dfrac{\left(\sin ^2\left(x\right)+\cos ^2\left(x\right)\right)\left(\sin \left(x\right)+\cos \left(x\right)\right)\left(\sin \left(x\right)-\cos \left(x\right)\right)}{\sin ^2\left(x\right)-\cos ^2\left(x\right)}

\mathrm{Apply\:Difference\:of\:Two\:Squares\:Formula:\:}x^2-y^2=\left(x+y\right)\left(x-y\right)

\sin ^2\left(x\right)-\cos ^2\left(x\right)=\left(\sin \left(x\right)+\cos \left(x\right)\right)\left(\sin \left(x\right)-\cos \left(x\right)\right)

=\dfrac{\left(\sin ^2\left(x\right)+\cos ^2\left(x\right)\right)\left(\sin \left(x\right)+\cos \left(x\right)\right)\left(\sin \left(x\right)-\cos \left(x\right)\right)}{\left(\sin \left(x\right)+\cos \left(x\right)\right)\left(\sin \left(x\right)-\cos \left(x\right)\right)}

\mathrm{Cancel\:the\:common\:factor:}\:\sin \left(x\right)+\cos \left(x\right)

=\dfrac{\left(\sin ^2\left(x\right)+\cos ^2\left(x\right)\right)\left(\sin \left(x\right)-\cos \left(x\right)\right)}{\sin \left(x\right)-\cos \left(x\right)}

\mathrm{Cancel\:the\:common\:factor:}\:\sin \left(x\right)-\cos \left(x\right)

=\sin ^2\left(x\right)+\cos ^2\left(x\right)

\mathrm{Use\:the\:following\:identity}:\quad \cos ^2\left(x\right)+\sin ^2\left(x\right)=1

=1


neelam8713: Thank you sir
AbhijithPrakash: NP :)
BTW don't call me sir as I'm too a student!! ^_^
neelam8713: ok
Similar questions