Math, asked by ekasbabbar, 11 months ago

Simplify
 \frac{ \sqrt{32} +  \sqrt{48}  }{ \sqrt{8} +  \sqrt{12}  }

Answers

Answered by kalavathibathina1717
4

Step-by-step explanation:

(32+48)/(8+12)

(28+212)/(8+12)

{2(8+12)}/(8+12)

2

Answered by bangtangranger
2

Answer:

2

Step-by-step explanation:

\frac{\sqrt{32} +\sqrt{48} }{\sqrt{8}+\sqrt{12}  } \\= \frac{\sqrt{32+48} }{\sqrt{8+12} } \\= \frac{\sqrt{80} }{\sqrt{20} }Prime Factorize 80 and 20

80 = 2 x 2 x 2 x 2 x 5

20 = 2 x 2 x 5

Pair up the like values and bring out of square root

√80 = 2 x 2√5

√20 = 2√5

\frac{4\sqrt{5} }{2\sqrt{5} }

Cancel out √5 and divide 4 and 2

= 2//

\frac{\sqrt{32} +\sqrt{48} }{\sqrt{8}+\sqrt{12}  } = 2

Please mark as brainliest

Similar questions