Math, asked by ravneet7499, 9 months ago

simplify
 \frac{ \sqrt{7} - 1 }{ \sqrt{7}  + 1}  -  \frac{ \sqrt{7}  + 1}{ \sqrt{7 } - 1 }  = a + b \sqrt{7}
I will mark as brainlist if correct and helpful please answer fast ​

Answers

Answered by ITzBrainlyGuy
5

 \large{  \bf\pink { \underline { \underline{Answer : }}}}

{ \sf {\dfrac{ \sqrt{7}  - 1}{ \sqrt{7} + 1 }   -  \dfrac{ \sqrt{7}  + 1}{ \sqrt{7} - 1 }  = a + b \sqrt{7} }}

{ \sf{Taking \: LHS}}

{ \sf{Rationalise \:  \: the  \: \: denominator}}

 = { \sf{ \dfrac{( \sqrt{7 }  - 1)( \sqrt{7}  - 1)}{( \sqrt{7}  +1)( \sqrt{7}  - 1)}  -   \dfrac{( \sqrt{7} + 1 )( \sqrt{7}  + 1)}{( \sqrt{7}  - 1)( \sqrt{7}  + 1)}  }}

 { \sf{Using}}  \\ { \sf{\implies {(a + b)}^{2} =  {a}^{2} + 2ab +  {b}^{2}   }} \\ { \sf{ \implies(a + b)(a - b) =  {a}^{2} -  {b}^{2}  }} \\ { \sf{ \implies {(a - b)}^{2} =  {a}^{2} - 2ab +  {b}^{2}   }}

{ \sf{ =  \dfrac{ {( \sqrt{7 } - 1) }^{2}  }{ {( \sqrt{7} )}^{2} -  {1}^{2} }   -   \dfrac{ ({ \sqrt{7} + 1) }^{2} }{ {( \sqrt{7} )}^{2} -  {1}^{2}  } }}

{ \sf{ =  \dfrac{ {( \sqrt{7} - 1) }^{2}   -   {( \sqrt{7}  + 1)}^{2}  }{6} }}

{ \sf{using \: algebraic \:identitiy }} \\ { \sf{\implies {(a + b)}^{2} -  {(a - b)}^{2} = 4ab}}

{ \sf{  = \dfrac{ 4  \sqrt{7}   }{6} }}

{ \sf{a + b \sqrt{7}  =  \dfrac{2 \sqrt{7} }{3} }}

{ \sf{a + b \sqrt{7} = 0 +  {  \dfrac{  2}{3} \sqrt{7} }^{}}}

{ \sf{Now \: by \: comparing}}

{ \sf{a  = 0,b =  \dfrac{ 2}{3} }}

Answered by mehtadeepakn
0

Step-by-step explanation:

thanks toh ggiyg yvtctiftur r

Similar questions