Math, asked by Anonymous, 4 months ago

simplify
\sf\frac {cos (90°-A).sec (180°-A).sin(180°-A)}{sin(90°+A).tan (90°+A).cosec (90°+A)}

Answers

Answered by NewGeneEinstein
15

Answer:

Solution:-

\\\qquad\quad\displaystyle\sf {:}\leadsto \dfrac {cos (90°-A).sec (180°-A).sin(180°-A)}{sin (90°+A).tan (90°+A).cosec(90°+A)}

\\\qquad\quad\displaystyle\sf {:}\leadsto \dfrac {sinA.(-secA).sinA}{cosA.(-cotA).secA}

\\\qquad\quad\displaystyle\sf {:}\leadsto \dfrac {sin^2A.(-secA)}{cosA.\dfrac {cosA}{sinA}.(-secA)}

\\\qquad\quad\displaystyle\sf {:}\leadsto \dfrac {sin^2A.sinA}{cos^2A}

\\\qquad\quad\displaystyle\sf {:}\leadsto \dfrac{sin^3A}{cos^2A}\red {\bigstar}

Answered by gurmanpreet1023
45

Answer:

\huge\bold{Solution}

__________________________

i)

 \cos(90 - a )  =  \sec \: a

ii)

 \sin(180 - a)  =  \sin \: a

iii)

 \cot(360 - a)  =  -\cot a

iv)

 \sec(180 + a)  =  -  \sec\alpha

v)

 \tan(90 +  \alpha )  =  -  \cot\alpha

vi)

 \sin( -  \alpha ) =   - \sin\alpha

__________________________

Now,

LHS=cosec 90-a .sin 180-A.cot 360-A/sec 180+A.tan 90+A.sin(-A)

=[secA \times sinA \times (-cotA)] \div [(-secA \times (-cotA) \times (-sinA)]

After cancellation, we get

= 1

= RHS

••••

Similar questions