Math, asked by hrruru, 1 year ago

simplify
simplify  \frac{ \sqrt{2} - 1 }{ \sqrt{2}  + 1 }

Answers

Answered by DaIncredible
1
Hey friend,
Here is the answer you were looking for:
 \frac{ \sqrt{2} - 1 }{ \sqrt{2}  + 1}  \\  \\ on \: rationalizing \: we \: get \\  \\  =  \frac{ \sqrt{2}  - 1}{ \sqrt{2} + 1 }  \times  \frac{ \sqrt{2}  - 1}{ \sqrt{2}  - 1}  \\  \\  using \: the \: identities \\  {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{ {( \sqrt{2} )}^{2}  +  {(1)}^{2} - 2 \times  \sqrt{2}   \times 1}{ {( \sqrt{2}) }^{2} -  {(1)}^{2}  }  \\  \\  =  \frac{2 + 1 - 2 \sqrt{2} }{2 - 1}  \\  \\  = 3 - 2 \sqrt{2}

Hope this helps!!!!

@Mahak24

Thanks....
☺☺
Similar questions