Math, asked by diyafathima45, 1 year ago

simplify
 simplify \\ \sqrt{7}  - 1 \div \sqrt{7 }  + 1 +  \sqrt{7}   + 1 \div  \sqrt{7}  - 1 \\  \\

Answers

Answered by DaIncredible
5
Identities used :

 {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy \\  \\  {(x - y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy \\  \\ (x + y)(x - y) =  {x}^{2}  -  {y}^{2}


 \frac{ \sqrt{7} - 1 }{ \sqrt{7} + 1 }  +  \frac{ \sqrt{7}  + 1}{ \sqrt{7} - 1 }  \\


On rationalizing the denominator we get,


 =  \frac{ \sqrt{7} - 1 }{ \sqrt{7}  + 1 }  \times  \ \frac{ \sqrt{7}  -  1 }{ \sqrt{7}  -  1 }  +  \frac{ \sqrt{7}  + 1}{ \sqrt{7}  - 1}  \times   \frac{ \sqrt{7} + 1 }{ \sqrt{7}  + 1 }  \\  \\  =  \frac{ {( \sqrt{7}) }^{2}  +  {(1)}^{2} - 2( \sqrt{7} )(1) }{ {( \sqrt{7} )}^{2} -  {(1)}^{2}  }  +  \frac{ {( \sqrt{7} )}^{2} +  {(1)}^{2}  + 2( \sqrt{7} )(1) }{ {( \sqrt{7} )}^{2} -  {(1)}^{2}  }  \\  \\  =  \frac{7 + 1  - 2 \sqrt{7} }{7 - 1}  +  \frac{7 + 1 + 2 \sqrt{7} }{7 - 1}  \\  \\  =  \frac{8 - 2 \sqrt{7} }{6}  +  \frac{8 + 2 \sqrt{7} }{6}  \\  \\  =  \frac{2(4 -  \sqrt{7}) }{2(3)}  +  \frac{2(4 +  \sqrt{7} )}{2(3)}  \\  \\  =  \frac{4 -  \sqrt{7} }{3}  +  \frac{4 +  \sqrt{7} }{3}  \\  \\  =  \frac{4 -  \sqrt{7}  + 4 +  \sqrt{7} }{3}  \\  \\  =   \frac{4 + 4}{3}  \\  \\  =  \frac{8}{3}  \\  \\   \bf \:  = 2.66 \:  \: (approx)

If any doubt, please ask :)

diyafathima45: Anyanother easy method to solve this
DaIncredible: I guess no, you have ti rationalize it right ? It's way too easy. All you need to just practice that chapter so that you can be sure about your answer.
diyafathima45: S u r correct
DaIncredible: :)
Similar questions