Math, asked by haripriyaharipriya05, 10 months ago

Simplify:
 \sqrt[12]({x {}^{4})}  \frac{1}{3}

Answers

Answered by malavikabala012003
0

The given expression can be written as,

x^{4*\frac{1}{3}*\frac{1}{12}  }

x^{\frac{1}{3}* \frac{1}{3}  }

x^{\frac{1}{9} }

= \sqrt[9]{x}

Answered by Salmonpanna2022
2

Step-by-step explanation:

 \bf \underline{Given-} \\

  \sf{\sqrt[12]{( {x}^{4} {)}^{ \frac{1}{3} }  }  }\\

 \bf \underline{To\: find-} \\

\textsf{the value of X = ? }\\

 \bf \underline{Solution-} \\

\textsf{We have,}\\

  \sf{\sqrt[12]{( {x}^{4} {)}^{ \frac{1}{3} }  }  }\\

 \sf{ \Rightarrow \:  \sqrt[12]{ {x}^{4 \times  \frac{1}{3} } } } \\

 \sf{ \Rightarrow \:  \bigg( {x}^{ \frac{4}{3}   }  \bigg) ^{ \frac{1}{12} }} \\

 \sf{ \Rightarrow \:  {x}^{ \frac{ \cancel{4}}{3} \times  \frac{1}{ \cancel{ {12 }^{3} }}  } } \\

 \sf{ \Rightarrow \:  {x}^{ \frac{1}{3 \times 3} } } \\

 \sf{ \Rightarrow \:  {x}^{ \frac{1}{9} } } \\

 \bf \underline{Answer-} \\

 \underline{ \bf{Hence, the \:  value \:  of \: X \: is \:  {x}^{ \frac{1}{9} } }}. \\

Similar questions