Math, asked by Vanessa18, 1 year ago

Simplify
( \sqrt{3}  -  \sqrt{5} )( \sqrt{3}   +  \sqrt{5} ) \div 7 -  \sqrt[2]{5}


abhi569: Please post ur question properly
abhi569: Or in a picture

Answers

Answered by DaIncredible
5
Hey friend,
Here is the answer:
 \frac{( \sqrt{3}  -  \sqrt{5} )( \sqrt{3}  +  \sqrt{5}) }{ 7 -  \sqrt[2]{5}  }  \\  \\  using \: identities \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{ {( \sqrt{3} )}^{2} -  {( \sqrt{5}) }^{2}  }{7 -  \sqrt{5} }  \times  \frac{7 +  \sqrt{5} }{7 +  \sqrt{5} }  \\  \\  =  \frac{3 - 5}{7 -  \sqrt{5} }  \times  \frac{7 +  \sqrt{5} }{7 +  \sqrt{5} }  \\  \\ again \: using \: same \: identity \\  \\  =  \frac{ - 2 \times 7 - 2 \times   \sqrt{5}  }{ {(7)}^{2}  -  {( \sqrt{5} )}^{2} }  \\  \\  =  \frac{ - 14 - 2 \sqrt{5} }{49 - 5}  \\  \\  =  \frac{ - 14 - 2 \sqrt{5} }{ 44}  \\  \\  =  \frac{ - 7 -  \sqrt{5} }{22}

Hope this helps!!!

@Mahak24

Thanks...
☺☺

abhi569: Pta nhi
abhi569: Dekh lena
abhi569: Ab ye question he confusing hai.. To na tum kuch kr sakte ho na main
Vanessa18: I think you missed the a number
Vanessa18: a number**
Vanessa18: After writing identity you missed out the square of 5
abhi569: All is correct
abhi569: According to the question which she has written
siddhartharao77: Next time attach a picture also to it while asking this kind of questions. Because it is little bit confusing.
abhi569: yeah
Answered by siddhartharao77
11
Given : ( \sqrt{3} -  \sqrt{5} )  \frac{( \sqrt{3} +  \sqrt{5} ) }{7} -  \sqrt{5}

 \frac{( \sqrt{3} +  \sqrt{5} )( \sqrt{3} -  \sqrt{5} ) }{7} -  \sqrt{5}

 \frac{-2}{7} -  \sqrt{5}

 \frac{-2 - 7 \sqrt{5} }{7}


Hope this helps!
Similar questions