Math, asked by yuvrajsingh968, 1 year ago

simplify..
 \sqrt[4]{81}  - 8( \sqrt[3]{216)}  + 15 \sqrt[5]{32}  +  \sqrt{225 }

Answers

Answered by AbhijithPrakash
22

Answer:

$\sqrt[4]{81}-8\left(\sqrt[3]{216}\right)+15\sqrt[5]{32}+\sqrt{225}=0$

Step-by-step explanation:

$\sqrt[4]{81}-8\left(\sqrt[3]{216}\right)+15\sqrt[5]{32}+\sqrt{225}$

$\gray{\mathrm{Remove\:parentheses}:\quad \left(a\right)=a}$

$=\sqrt[4]{81}-8\sqrt[3]{216}+15\sqrt[5]{32}+\sqrt{225}$

$\black{\sqrt[4]{81}}$

$\gray{\mathrm{Factor\:the\:number:\:}\:81=3^4}$

$=\sqrt[4]{3^4}$

$\gray{\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a^n}=a}$

$\gray{\sqrt[4]{3^4}=3}$

$=3$

$\black{8\sqrt[3]{216}}$

$\gray{\sqrt[3]{216}=6}$

$=8\cdot \:6$

$\gray{\mathrm{Multiply\:the\:numbers:}\:8\cdot \:6=48}$

$=48$

$\black{15\sqrt[5]{32}}$

$\gray{\sqrt[5]{32}=2}$

$=15\cdot \:2$

$\gray{\mathrm{Multiply\:the\:numbers:}\:15\cdot \:2=30}$

$=30$

$\black{\sqrt{225}}$

$\gray{\mathrm{Factor\:the\:number:\:}\:225=15^2}$

$=\sqrt{15^2}$

$\gray{\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a^n}=a}$

$\gray{\sqrt{15^2}=15}$

$=15$

$=3-48+30+15$

$\gray{\mathrm{Add/Subtract\:the\:numbers:}\:3-48+30+15=0}$

$=0$

Answered by Anonymous
12

Hey there

refer to attachment

Attachments:
Similar questions