Math, asked by heneitouthang649, 3 months ago

simplify:
 \sqrt{45 - 3 \sqrt{20 + 4 \sqrt{5} } }

Answers

Answered by MrImpeccable
18

ANSWER

Question:

  • \sqrt{45} - 3\sqrt{20} + 4\sqrt{5}

(The question mentioned by the user, couldn’t be simplified without putting the values of surds)

Answer:

:\longrightarrow \sqrt{45} - 3\sqrt{20} + 4\sqrt{5} \\\\\text{We cannot add or subtract unlike surds, so we convert into like surds.} \\\\:\implies \sqrt{(9*5)} - 3\sqrt{(4*5)} + 4\sqrt{5} \\\\:\implies 3\sqrt{5} - (3*2)\sqrt{5} +4\sqrt{5} \\\\:\implies 3\sqrt{5} - 6\sqrt{5} +4\sqrt{5} \\\\:\implies 7\sqrt{5} - 6\sqrt{5} \\\\\bf{:\implies \sqrt{5}}

Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Solution-} \\

 \sf{ \sqrt{45} - 3 \sqrt{20}  + 4 \sqrt{5}  } \\

 \sf{ =  \sqrt{9 \times 5}  - 3 \sqrt{4 \times 5} + 4 \sqrt{5}  } \\

 \sf{ = 3 \sqrt{5}  - 3 \times 2 \sqrt{5} + 4 \sqrt{5}  } \\

 \sf{ = (3 - 6 + 4) \sqrt{5} } \\

 \sf{ =  \sqrt{5} } \:  \:  \:  \:  \bf{Ans.} \\

Similar questions