Math, asked by yasirali5175, 1 year ago

Simplify
tan^{-1}[ \frac{a\ cosx-b\ sinx}{b\ cosx+a\ sinx}] if a/b tan x > -1.

Answers

Answered by sprao534
2
Please see the attachments
Attachments:
Answered by VelvetBlush
0

ANSWER:-

WE HAVE,

\longrightarrow\huge\sf\red{{tan}^{ - 1}( \frac{a \: cos \: x - b \: sin \: x}{b \: cos \: x \:  + a \: sin \: x} )}

\longrightarrow\huge\sf\red{ {tan}^{ - 1} ( \frac{ \frac{a \: cos \: x - b \: sin \: x}{b \: cos \: x} }{ \frac{b \: cos \: x + a \: sin \: x}{b \: cos \: x} } )}

\longrightarrow\huge\sf\red{ {tan}^{ - 1} ( \frac{ \frac{a}{b} - tan \: x }{1 +  \frac{a}{b}tan \: x } )}

\longrightarrow\large\sf\red{ {tan}^{ - 1}  \frac{a}{b}  -  {tan}^{ - 1} (tan \: x) =  {tan}^{ - 1}  \frac{a}{b}  - x}

Similar questions