Simplify -
Answers
Step-by-step explanation:
(x+y+z)
2
=x
2
+y
2
+z
2
+2xy+2yz+2zx [Identity]
Here,
x=2a
y=3b
z=4c
Putting Values in Identity, We get :
⇒ (2a+3b+4c)
2
=(2a)
2
+(3b)
2
+(4c)
2
+2(2a)(3b)+2(3b)(4c)+2(4c)(2a)
=4a
2
+9b
2
+16c
2
+12ab+24bc+16ca
ANSWER:
To Simplify:
- (2a - 3b + 3c)² - (2a - 3b - 4c)²
Solution:
We are given that,
⇒ (2a - 3b + 3c)² - (2a - 3b - 4c)²
We know that,
⇒ (x + y + z)² = x² + y² + z² + 2(xy + yz + zx)
Here in first term,
⇒ x = 2a, y = (-3b) and z = 3c
And in second term,
⇒ x = 2a, y = (-3b) and z = (-4c)
So,
⇒ (2a - 3b + 3c)² - (2a - 3b - 4c)²
⇒ [(2a)² + (-3b)² + (3c)² + 2((2a)(-3b) + (-3b)(3c) + (3c)(2a))] - [(2a)² + (-3b)² + (-4c)² + 2((2a)(-3b) + (-3b)(-4c) + (-4c)(2a))]
⇒ [4a² + 9b² + 9c² + 2((-6ab) + (-9bc) + (6ca))] - [4a² + 9b² + 16c² + 2((-6ab) + (12bc) + (-8ca))]
So,
⇒ [4a² + 9b² + 9c² + 2(-6ab - 9bc + 6ca)] - [4a² + 9b² + 16c² + 2(-6ab + 12bc - 8ca)]
⇒ [4a² + 9b² + 9c² - 12ab - 18bc + 12ca] - [4a² + 9b² + 16c² - 12ab + 24bc - 16ca]
Opening the bracket,
⇒ 4a² + 9b² + 9c² - 12ab - 18bc + 12ca - 4a² - 9b² - 16c² + 12ab - 24bc + 16ca
Grouping like terms together,
⇒ (4a² - 4a²) + (9b² - 9b²) + (9c² - 16c²) + (-12ab + 12ab) + (-18bc - 24bc) + (12ca + 16ca)
So,
⇒ (0) + (0) + (-7c²) + (0) + (-44bc) + (28ca)
Hence,
⇒ - 7c² - 44bc + 28ca
Taking c common,
⇒ c(-7c - 44b + 28a)
Therefore,
⇒ (2a - 3b + 3c)² - (2a - 3b + 4c)² = c(-7c - 44b + 28a)
OR
⇒ (2a - 3b + 3c)² - (2a - 3b + 4c)² = c(28a - 44b - 7c)
Formula Used:
- (x + y + z)² = x² + y² + z² + 2(xy + yz + zx)