Math, asked by Innocentgirl58, 7 months ago

Simplify:
(x +  \frac{1}{x} ) {}^{2}  - (x -  \frac{1}{x}  ) {}^{2}

Answers

Answered by RvChaudharY50
40

Solution :-

(x + 1/x)² - (x - 1/x)²

using :-

  • (a + b)² = a² + b² + 2ab
  • (a - b)² = a² + b² - 2ab

→ (x² + 1/x² + 2 * x * 1/x) - (x² + 1/x² - 2 * x * 1/x)

→ (x² + 1/x² + 2) - (x² + 1/x² - 2)

→ x² - x² + 1/x² - 1/x² + 2 + 2

4 (Ans.)

_________________

Shortcut :-

  • (a + b)² - (a - b)² = 4ab

we have :-

  • a = x
  • b = (1/x)

So,

(x + 1/x)² - (x - 1/x)²

→ 4 * x * (1/x)

4 (Ans.)

__________________________

Answered by InfiniteSoul
14

\sf{\underline{\boxed{\green{\large{\bold{ Solution}}}}}}

  • We can solve this by 2 methods

\sf{\red{\boxed{\bold{Long\:method}}}}

\sf\implies ( x + \dfrac{1}{x})^2 - ( x - \dfrac{1}{x})^2

\sf{\bold{\green{\underline{\underline{( a + b)^2 = a^2 + b^2 + 2ab }}}}}

\sf{\bold{\green{\underline{\underline{( a-b)^2 = a^2 + b^2 - 2ab }}}}}

\sf\implies ( x^2 + (\dfrac{1}{x})^2 + 2 ) - ( x^2 - (\dfrac{1}{x})^2 - 2 )

\sf\implies  x^2 + \dfrac{1}{x}^2 + 2 - x - \dfrac{1}{x}^2 + 2

\sf\implies  \cancel{x^2} +\cancel{ \dfrac{1}{x}^2} + 2 - \cancel{x} - \cancel{\dfrac{1}{x}^2} + 2

\sf\implies 2 + 2

\sf\implies 4

\longrightarrow\sf{\bold{\orange{\underline{\underline{\dag 4 }}}}}

\sf{\red{\boxed{\bold{Shortcut\: method}}}}

\sf\implies ( x + \dfrac{1}{x})^2 - ( x - \dfrac{1}{x})^2

\sf{\bold{\green{\underline{\underline{( a + b )^2 - ( a - b)^2 = 4ab}}}}}

\sf\implies 4 \times x \times\dfrac{1}{x}

\sf\implies 4

\longrightarrow\sf{\bold{\orange{\underline{\underline{\dag 4}}}}}


RvChaudharY50: Perfect .
Similar questions