Math, asked by aniket067, 9 months ago

Simplify the equation

Attachments:

Answers

Answered by Stylish45
2

Answer:

b^2/a^2

Step-by-step explanation:

Hope it will help you

thanks

Attachments:
Answered by Anonymous
29

Answer:

 =  >  \frac{ \sqrt{ {a}^{2}   -   {b}^{2}  } + a }{ \sqrt{ {a}^{2}  +  {b}^{2} }  + b}  \div  \frac{ \sqrt{ {a}^{2} +  {b}^{2}   } - b }{a -  \sqrt{ {a}^{2} -  {b}^{2}  } }  \\  \\  =  >  \frac{ \sqrt{ {a}^{2}   -   {b}^{2}  } + a }{\sqrt{ {a}^{2}  +  {b}^{2} }  + b}  \times  \frac{a -  \sqrt{ {a}^{2} -  {b}^{2}  }}{\sqrt{ {a}^{2} +  {b}^{2}   } - b}   \\  \\  =  >  \frac{a +\sqrt{ {a}^{2}   -   {b}^{2}  }  }{\sqrt{ {a}^{2}  +  {b}^{2} }  + b}  \times  \frac{a -  \sqrt{ {a}^{2} -  {b}^{2}  }}{\sqrt{ {a}^{2} +  {b}^{2}   } - b}   \\  \\  Using \: formula =  > (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\ We \: get \: the \: following \: results:

=  >  \frac{(a +\sqrt{ {a}^{2}   -   {b}^{2}  } )(a -  \sqrt{ {a}^{2} -  {b}^{2}  })}{(\sqrt{ {a}^{2}  +  {b}^{2} }  + b)(\sqrt{ {a}^{2} +  {b}^{2}   } - b)}  \\  \\  =  >  \frac{( {a)}^{2} -  {( \sqrt{ {a}^{2}  -  {b}^{2} } )}^{2}  }{ {( \sqrt{ {a}^{2}  +  {b}^{2} })  }^{2} -  {b}^{2}  }  \\  \\  =  >  \frac{ {a}^{2}  - ( {a}^{2}  -  {b}^{2} )}{ ({a}^{2}  +  {b}^{2} ) -  {b}^{2} }  \\  \\  =  >  \frac{ {a}^{2}  -  {a}^{2}  +  {b}^{2} }{ {a}^{2} +  {b}^{2}   -  {b}^{2} }  \\  \\  =  >  \frac{ {b}^{2} }{ {a}^{2} }  \\  \\  =  >   { (\frac{b}{a} )}^{2}

Similar questions