Math, asked by esha27srivastava, 3 months ago

Simplify the equation given in the picture

Attachments:

Answers

Answered by Anonymous
101

Question :-

Simplify :-

\sf \dfrac{4\times 10^7 \times 6 \times 10^{-5}}{8 \times 10^4}

Answer :-

\implies\sf \dfrac{4\times 10^7 \times 6 \times 10^{-5}}{8 \times 10^4}

\implies\sf \dfrac{ 2 \times 2 \times 10^{7} \times 10^{-5} \times 2 \times 3}{2^3 \times 10^4}

\implies\sf \dfrac{2^2 \times 10^{7-5} \times 2 \times 3}{2^3 \times 10^4}

\implies\sf \dfrac{2^2 \times 2 \times 10^2 \times 3}{2^3 \times 10^4}

\implies\sf \dfrac{\cancel{2^3} \times 10^2 \times 3}{\cancel{2^3} \times 10^4}

\implies\sf \dfrac{10^2 \times 3}{10^4}

\implies\sf 10^{2-4} \times 3

\implies\sf 10^{-2} \times 3

\implies\sf \dfrac{3}{10^2}

\implies\sf \dfrac{3}{100}

\implies\boxed{\sf 0.03}

Additional information :-

\begin{gathered}\boxed{\begin{minipage}{5 cm}\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{minipage}}\end{gathered}

Answered by BrainlyRish
26

Given : \sf{\dfrac{4\times10^{7} \times 6 \times 10^{-5}}{8 \times 10^{4}}}\\

To Simplify: \sf{\dfrac{4  \times 10^{7} \times 6 \times 10^{-5}}{8 \times 10^{4}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀⠀\underline {\frak{\star\:Now \: By \: Simplifying \: the \: Given \: Values \::}}\\

⠀⠀⠀⠀⠀:\implies \tt{\dfrac{4  \times 10^{7} \times 6 \times 10^{-5}}{8 \times 10^{4}}}\\

⠀⠀⠀⠀⠀:\implies \tt{\dfrac{2 \times 2  \times 10^{7} \times 2 \times 3 \times 10^{-5}}{2 \times 2 \times 2 \times 10^{4}}}\\

⠀⠀⠀⠀⠀:\implies \tt{\dfrac{2^{2}  \times 10^{7} \times 2 \times 3 \times 10^{-5}}{2 ^{3} \times 10^{4}}}\\

⠀⠀⠀⠀⠀:\implies \tt{\dfrac{2^{3}  \times 10^{7} \times  3 \times 10^{-5}}{2 ^{3} \times 10^{4}}}\\

⠀⠀⠀⠀⠀:\implies \tt{\dfrac{2^{3}  \times 10^{7}  \times 10^{-5}\times 3 }{2 ^{3} \times 10^{4}}}\\

As We know that :

  • \star a^{x} \times a^{y} = a ^{x +y}

⠀⠀⠀⠀⠀:\implies \tt{\dfrac{2^{2}  \times 10^{7- 5}  \times 3 }{2 ^{3} \times 10^{4}}}\\

⠀⠀⠀⠀⠀:\implies \tt{\dfrac{\cancel {2^{3}}  \times 10^{2}  \times 3 }{\cancel {2 ^{3} }\times 10^{4}}}\\

⠀⠀⠀⠀⠀:\implies \tt{\dfrac{ 10^{2}  \times 3 }{  10^{4}}}\\

As, We know that ,

  • \star \dfrac{a^{y}}{a^{x}}= a ^{y-x}

⠀⠀⠀⠀⠀:\implies \tt{ 10^{2-4}  \times 3 }\\

⠀⠀⠀⠀⠀:\implies \tt{ 10^{-2}  \times 3 }\\

Or ,

⠀⠀⠀⠀⠀:\implies \tt{   \dfrac{ 3}{10^{2}} }\\

⠀⠀⠀⠀⠀:\implies \tt{   \dfrac{ 3}{100} }\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm { Answer \:= 0.03\: }}}}\:\bf{\bigstar}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions