Math, asked by aishanidhyani393, 2 months ago

simplify the expression (x^a/x^-b)^a-b (x^b/x^-c)^b-c (x^c/x^-a)^c-a

please give the full explanation of the answer it's a humble request....​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\: {\bigg(\dfrac{ {x}^{a} }{ {x}^{ - b} } \bigg) }^{a - b} {\bigg(\dfrac{ {x}^{b} }{ {x}^{ - c} } \bigg) }^{b - c} {\bigg(\dfrac{ {x}^{c} }{ {x}^{ - a} } \bigg) }^{c - a}

Let first simply each term individually,

Consider,

\rm :\longmapsto\: {\bigg(\dfrac{ {x}^{a} }{ {x}^{ - b} } \bigg) }^{a - b}

We know that

\underbrace{\boxed{ \tt{ \frac{ {x}^{m} }{ {x}^{n} }  \:  =  \:  {x}^{m \:  -  \: n} }}}

Using this result, we get

\rm \:  =  \:  \:  {\bigg( {x}^{a - ( - b)} \bigg) }^{a - b}

\rm \:  =  \:  \:  {\bigg( {x}^{a + b} \bigg) }^{a - b}

We know,

\underbrace{\boxed{ \tt{ {( {x}^{m} )}^{n}  \:  =  \:  {x}^{mn} }}}

So, using this we get

\rm \:  =  \:  \:  {(x)}^{(a + b)(a - b)}

\rm \:  =  \:  \:  {x}^{ {a}^{2}  -  {b}^{2} }

Now, Consider,

\rm :\longmapsto\: {\bigg(\dfrac{ {x}^{b} }{ {x}^{ - c} } \bigg) }^{b - c}

We know that

\underbrace{\boxed{ \tt{ \frac{ {x}^{m} }{ {x}^{n} }  \:  =  \:  {x}^{m \:  -  \: n} }}}

So, using this identity we get

\rm \:  =  \:  \:  {\bigg( {x}^{b - ( - c)} \bigg) }^{b - c}

\rm \:  =  \:  \:  {\bigg( {x}^{b + c} \bigg) }^{b - c}

We know that

\underbrace{\boxed{ \tt{ {( {x}^{m} )}^{n}  \:  =  \:  {x}^{mn} }}}

So, using this, we get

\rm \:  =  \:  \:  {(x)}^{(b+c)(b - c)}

\rm \:  =  \:  \:  {x}^{ {b}^{2}  -  {c}^{2} }

Now, Consider

\rm :\longmapsto\: {\bigg(\dfrac{ {x}^{c} }{ {x}^{ - a} } \bigg) }^{c - a}

We know that,

\underbrace{\boxed{ \tt{ \frac{ {x}^{m} }{ {x}^{n} }  \:  =  \:  {x}^{m \:  -  \: n} }}}

So, using this result, we get

\rm \:  =  \:  \:  {\bigg( {x}^{c - ( - a)} \bigg) }^{c - a}

\rm \:  =  \:  \:  {\bigg( {x}^{c + a} \bigg) }^{c - a}

We know that,

\underbrace{\boxed{ \tt{ {( {x}^{m} )}^{n}  \:  =  \:  {x}^{mn} }}}

So, using this result, we get

\rm \:  =  \:  \:  {(x)}^{(c+a)(c - a)}

\rm \:  =  \:  \:  {x}^{ {c}^{2}  -  {a}^{2} }

Now, Consider the given expression

\rm :\longmapsto\: {\bigg(\dfrac{ {x}^{a} }{ {x}^{ - b} } \bigg) }^{a - b} {\bigg(\dfrac{ {x}^{b} }{ {x}^{ - c} } \bigg) }^{b - c} {\bigg(\dfrac{ {x}^{c} }{ {x}^{ - a} } \bigg) }^{c - a}

can be rewritten as using above,

\rm \:  =  \:  \:  {x}^{ {a}^{2}  -  {b}^{2} } \times {x}^{ {b}^{2}  -  {c}^{2} } \times {x}^{ {c}^{2}  -  {a}^{2} }

We know that,

\underbrace{\boxed{ \tt{ {x}^{m} \:  \times   \: {x}^{n}  \:  =  \:  {x}^{m  \: +  \: n} }}}

So, using this result, we get

\rm \:  =  \:  \: {x}^{ {a}^{2}  -  {b}^{2}  +  {b}^{2}  -  {c}^{2}  +  {c}^{2}  -  {a}^{2} }

\rm \:  =  \:  \:  {x}^{0}

\rm \:  =  \:  \: 1

Hence,

 \underbrace{\boxed{ \bf{ \:{\bigg(\dfrac{ {x}^{a} }{ {x}^{ - b} } \bigg) }^{a - b}  \: {\bigg(\dfrac{ {x}^{b} }{ {x}^{ - c} } \bigg) }^{b - c} \:  {\bigg(\dfrac{ {x}^{c} }{ {x}^{ - a} } \bigg) }^{c - a}  \:  = \:  1}}}

Similar questions