Math, asked by 7569145261, 2 months ago

simplify the following
1)(2/3)+(-4/5)+1+(-2/3)+(-11/5)
2)(5/8)+(-8/9)+0+(-13/3)+(17/24)​

Answers

Answered by SachinGupta01
27

\large\underline{\sf{Solution-}}

 \sf \: Simplify \:  the \:  following :

 \bf (1).. \:  \:  \sf \bigg(\dfrac{2}{3}  \bigg)+ \bigg( \dfrac{ - 4}{5}  \bigg)+1+ \bigg(\dfrac{ - 2}{3}\bigg) +\bigg( \dfrac{ - 11}{5} \bigg)

\sf  \implies \dfrac{2}{3}  +  \dfrac{ - 4}{5}  +1+ \dfrac{ - 2}{3} + \dfrac{ - 11}{5}

\sf  \implies \dfrac{2}{3}  +  \dfrac{ - 4}{5}  + \dfrac{1}{1} + \dfrac{ - 2}{3} + \dfrac{ - 11}{5}

 \sf Finding \:  LCM  \: of  \: 3,  \: 5, \:  1,  \: 3,  \: 5

\begin{array}{c|c}{\sf { \underline{3}}}&\underline{\sf { \:  \:  \: 3 - 5 - 1 - 3 - 5 \:  \: \: }} \\ {\sf { \underline{5}}}&\underline{\sf {\; \; 1  - 5 - 1 - 1 - 5\; \; \: }} \\{\sf {}}&{\sf \; \;1 - 1 - 1 - 1 - 1\;  \; \; }  \end{array}

 \sf LCM = 3  \times 5 = 15

\sf  \implies \dfrac{2}{3}   \times  \dfrac{5}{5}  =  \dfrac{10}{15}

\sf  \implies \dfrac{ - 4}{5}   \times  \dfrac{3}{3}  =  \dfrac{ - 12}{15}

\sf  \implies \dfrac{ 1}{1}   \times  \dfrac{15}{15}  =  \dfrac{15 }{15}

\sf  \implies  \dfrac{ - 2}{3}  \times  \dfrac{5 }{5}  =  \dfrac{ - 10}{15}

\sf  \implies \dfrac{ - 11}{5}  \times  \dfrac{3}{3}  =  \dfrac{ - 33}{15}

\bf   \underline{Now},

\sf  \implies   \dfrac{10}{15}    +\dfrac{ - 12}{15}  +  \dfrac{15 }{15}  + \dfrac{ - 10}{15}  + \dfrac{ - 33}{15}

 \sf  Taking \:  denominator \:  as  \: common

\sf  \implies   \dfrac{10 + ( - 12) + 15 + ( - 10) + ( - 33)}{15}

\sf  \implies   \dfrac{10  -  12 + 15  -  10  -  33}{15}

\sf  \implies   \dfrac{ - 2 + 15  -  10  -  33}{15}

\sf  \implies   \dfrac{ 13  -  10  -  33}{15}

\sf  \implies   \dfrac{ 3   -  33}{15}

\sf  \implies    \cancel\dfrac{  - 30}{15}

\sf  \implies    - 2

 \sf   \implies \underline{\boxed{ \sf Answer = -2 }}

━━━━━━━━━━━━━━━━━━━━━━━━━━

 \bf (2).. \:  \:  \sf \bigg(\dfrac{5}{8}  \bigg)+ \bigg( \dfrac{ - 8}{9}  \bigg)+0+ \bigg(\dfrac{ - 13}{3}\bigg) +\bigg( \dfrac{ 17}{24} \bigg)

\sf  \implies \dfrac{5}{8}  + \dfrac{ - 8}{9}  +0+ \dfrac{ - 13}{3}+ \dfrac{ 17}{24}

\sf  \implies \dfrac{5}{8}  + \dfrac{ - 8}{9}  + \dfrac{0}{1} + \dfrac{ - 13}{3}+ \dfrac{ 17}{24}

 \sf Finding \:  LCM  \: of  \: 8,  \: 9, \:  1,  \: 3,  \: 24

\begin{array}{c|c}{\sf { \underline{2}}}&\underline{\sf { \:  \:  \: 8 - 9 - 1 - 3 - 24\:  \: \: }} \\ {\sf { \underline{2}}}&\underline{\sf {\; \; 4  - 9 - 1 - 3 - 12\; \; \: }} \\ { \sf { \underline{2}}}&\underline{\sf {\; \; 2  - 9 - 1 - 3- 6\; \; \: }} \\ {\sf { \underline{3}}}&\underline{\sf {\; \; 1  - 9- 1 - 3 - 3\; \; \: }} \\ {\sf { \underline{3}}}&\underline{\sf {\; \; 1  - 3- 1 - 1 - 1\; \; \: }} \\{\sf {}}&{\sf \; \;1 - 1 - 1 - 1 - 1\;  \; \; }  \end{array}

 \sf LCM = 2 \times 2 \times 2 \times 3 \times 3 = 72

\sf  \implies \dfrac{5}{8} \times  \dfrac{ 9}{9}  =  \dfrac{45}{72}

\sf  \implies \dfrac{ - 8}{9} \times  \dfrac{ 8}{8}  =  \dfrac{ - 64}{72}

\sf  \implies \dfrac{0}{1} \times  \dfrac{72 }{72}  =  \dfrac{0}{72}

\sf  \implies \dfrac{ - 13}{3} \times  \dfrac{24 }{24}  =  \dfrac{ - 312}{72}

\sf  \implies \dfrac{ 17}{24}  \times  \dfrac{ 3}{3}  =  \dfrac{51}{72}

\bf   \underline{Now},

\sf  \implies \dfrac{45}{72}  + \dfrac{ - 64}{72}  + \dfrac{0}{72} + \dfrac{ - 312}{72}  + \dfrac{51}{72}

 \sf  Taking \:  denominator \:  as  \: common

\sf  \implies \dfrac{45 + ( - 64) + 0 + ( - 312) + 51}{72}

\sf  \implies \dfrac{45  -  64+ 0  - 312 + 51}{72}

\sf  \implies \dfrac{-19+ 0  - 312 + 51}{72}

\sf  \implies \dfrac{-331 + 51}{72}

\sf  \implies \cancel \dfrac{-280}{72}

\sf  \implies  \dfrac{-35}{9}

 \sf   \implies \underline{\boxed{ \sf Answer =  \dfrac{-35}{9} }}

━━━━━━━━━━━━━━━━━━━━━━━━━━

{\bf{Additional \: information : }}

\begin{gathered}\boxed{\begin{array} {c|c} \sf{ +,- } & \sf{ - } \\ \dfrac{\qquad\qquad}{} & \dfrac{\qquad}{} \\ \sf{- , +} & \sf{ - } \\ \dfrac{\qquad\qquad}{} & \dfrac{\qquad}{} \\ \sf{+,+} & \sf{ + } \\ \dfrac{\qquad\qquad}{} & \dfrac{\qquad }{} \\ \sf{-,-} & \sf{ + }\end{array}}\end{gathered}

Similar questions