Simplify the following:
1. 28-3 x 5 + 4
2.
5.
4. 30 = 6 + 8x3-10
7. 5+5+ 6 x 6
8.
10. 21 +7 + 16 -5x3
11.
Use of Brackets - Operations Us
When brackets are nres
[{0
Answers
Answer:
3 1/3 ÷ 5/3 - 1/10 of 2 ½ + 7/4
= (3 × 3 + 1)/3 ÷ 5/3 – 1/10 of (2 × 2 + 1)/2 + 7/4
= 10/3 ÷ 5/3 - 1/10 of 5/2 + 7/4
[‘of’ simplified]
= 10/3 × 3/5 – ½ × ½ + 7/4 [‘÷’ simplified]
= 2/1 - ¼ + 7/4 [‘×’ simplified]
= (2 × 4)/1 × 4) - (1 × 1)/4 × 1) + (7 × 1)/4 × 1)
= 8/4 - ¼ + 7/4
[Now the denominators are same of all the fractions]
= (8 – 1 + 7)/4 [‘+’ and ‘-‘ simplified]
= 14/4
= 7/2
2. 45 of 3/5 ÷ 1 2/3 + 3 of 1/3 – 10
Solution:
45 of 3/5 ÷ 1 2/3 + 3 of 1/3 – 10
= 45 of 3/5 ÷ (1 × 3 + 2)/3 + 3 of 1/3 – 10
= 45 of 3/5 ÷ 5/3 + 3 of 1/3 – 10
= 45 × 3/5 ÷ 5/3 + 3 × 1/3 – 10 [‘of’ simplified]
= 9 × 3 × 3/5 + 3 × 1/3 – 10 [‘÷’ simplified], [‘×’ simplified]
= (27 × 3)/5 + 1 – 10
= 81/5 + 1 – 10
= (81 × 1)/(5 × 1) + (1 × 5)/(1 × 5) – (10 × 5)/(1 × 5)
= 81/5 + 5/5 – 50/5
[Now the denominators are same of all the fractions]
= (81 + 5 – 50)/5 [‘+’ and ‘-‘ simplified]
= 36/5
= 7 1/5