Math, asked by siddhantburbure4448, 9 months ago

Simplify The Following
1 / √6-√2

Answers

Answered by Anonymous
3

Answer:

Simplify each of the following by rationalising the denominator; 15+√2 (ii) 5+√65-√6 (iii) 7+3√57-3√5 (iv) 2 √3-√52√2+3√3. check-circle. Text Solution. Solution :.

Answered by nvsakhil3339
0

Answer:

\frac{1}{60}(6\sqrt{5}+5\sqrt{6}+\sqrt{330})

60

1

(6

5

+5

6

+

330

)

Step-by-step explanation:

Here, the given expression is,

\frac{1}{\sqrt{6}+\sqrt{5}-\sqrt{11}}

6

+

5

11

1

For rationalizing the denominator, multiply both numerator and denominator by √6 + √5 + √11,

=\frac{1}{\sqrt{6}+\sqrt{5}-\sqrt{11}}\times \frac{\sqrt{6}+\sqrt{5}+\sqrt{11}}{\sqrt{6}+\sqrt{5}+\sqrt{11}}=

6

+

5

11

1

×

6

+

5

+

11

6

+

5

+

11

=\frac{\sqrt{6}+\sqrt{5}+\sqrt{11}}{(\sqrt{6}+\sqrt{5})^2-(\sqrt{11})^2}=

(

6

+

5

)

2

−(

11

)

2

6

+

5

+

11

=\frac{\sqrt{6}+\sqrt{5}+\sqrt{11}}{6+5+2\times\sqrt{6}\times \sqrt{5}-11}=

6+5+2×

6

×

5

−11

6

+

5

+

11

=\frac{\sqrt{6}+\sqrt{5}+\sqrt{11}}{2\sqrt{30}}=

2

30

6

+

5

+

11

Again for rationalizing the denominator, multiply both numerator and denominator by √30,

=\frac{\sqrt{180}+\sqrt{150}+\sqrt{330}}{60}=

60

180

+

150

+

330

=\frac{6\sqrt{5}+5\sqrt{6}+\sqrt{330}}{60}=

60

6

5

+5

6

+

330

=\frac{1}{60}(6\sqrt{5}+5\sqrt{6}+\sqrt{330})=

60

1

(6

5

+5

6

+

330

)

Similar questions