Math, asked by atif3355, 1 year ago

Simplify the following


Attachments:

Answers

Answered by AbhijithPrakash
6

Answer:

\dfrac{1-\dfrac{4}{z}-\dfrac{21}{z^2}}{1-\dfrac{2}{z}-\dfrac{15}{z^2}}=\dfrac{z-7}{z-5}

Step-by-step explanation:

\dfrac{1-\dfrac{4}{z}-\dfrac{21}{z^2}}{1-\dfrac{2}{z}-\dfrac{15}{z^2}}

\gray{\mathrm{Join}\:1-\dfrac{2}{z}-\dfrac{15}{z^2}:\quad \dfrac{z^2-2z-15}{z^2}}

=\dfrac{1-\dfrac{4}{z}-\dfrac{21}{z^2}}{\dfrac{z^2-2z-15}{z^2}}

\gray{\mathrm{Join}\:1-\dfrac{4}{z}-\dfrac{21}{z^2}:\quad \dfrac{z^2-4z-21}{z^2}}

=\dfrac{\dfrac{z^2-4z-21}{z^2}}{\dfrac{z^2-2z-15}{z^2}}

\gray{\mathrm{Divide\:fractions}:\quad \dfrac{\dfrac{a}{b}}{\dfrac{c}{d}}=\dfrac{a\cdot \:d}{b\cdot \:c}}

=\dfrac{\left(z^2-4z-21\right)z^2}{z^2\left(z^2-2z-15\right)}

\gray{\mathrm{Cancel\:the\:common\:factor:}\:z^2}

=\dfrac{z^2-4z-21}{z^2-2z-15}

\gray{\mathrm{Factor}\:z^2-4z-21:\quad \left(z+3\right)\left(z-7\right)}

=\dfrac{\left(z+3\right)\left(z-7\right)}{z^2-2z-15}

\gray{\mathrm{Factor}\:z^2-2z-15:\quad \left(z+3\right)\left(z-5\right)}

=\dfrac{\left(z+3\right)\left(z-7\right)}{\left(z+3\right)\left(z-5\right)}

\gray{\mathrm{Cancel\:the\:common\:factor:}\:z+3}

=\dfrac{z-7}{z-5}

Similar questions