English, asked by moniesbonsai, 10 months ago

simplify the following​

Attachments:

Answers

Answered by BrainlyAVYAM
1

Answer:

 \frac{ \sqrt{13}  -  \sqrt{11} }{ \sqrt{13}  +  \sqrt{11} }  +  \frac{ \sqrt{13} +  \sqrt{11}  }{ \sqrt{13} -  \sqrt{11}  }  \\  =  \frac{( \sqrt{13}  -  \sqrt{11} ) {}^{2} +  (\sqrt{13}  +  \sqrt{11}  ) {}^{2} }{( \sqrt{13} +  \sqrt{11} )( \sqrt{13}  -  \sqrt{11}  )}  \\  =  \frac{(13 + 11 - 2 \sqrt{143}) +  (13 + 11 + 2 \sqrt{143} )}{(13 - 11)}  \\  =  \frac{24 + 24 - 2 \sqrt{143}  +  2 \sqrt{143}  }{2}  \\  =  \frac{48}{2}  = 24 \:  \: ans

Hey! Mate Here is your solution. Thanks

Answered by Anonymous
1

Answer: 24

Explanation:

[\sqrt{13}+\sqrt{11} / \sqrt{13}-\sqrt{11} ] + [\sqrt{13}-\sqrt{11} / \sqrt{13}+\sqrt{11} ]\\By   \ rationalising  \  the    \ denominator   \  method,\\\13+11-2\sqrt{143}+13+11+2\sqrt{143}\ /\ 2 [ (a+b)^2]\\\\\48 \ /\  2 \\Ans - 24

Hope this helps if so please mark this as the Brainiest! :)

Similar questions