Math, asked by nakulbansa3, 10 months ago

simplify the following​

Attachments:

Answers

Answered by Ranveer01
1

Answer:

\frac{7 \sqrt{3} }{ \sqrt{10} +  \sqrt{3}  }  -  \frac{2 \sqrt{5} }{ \sqrt{6}  +  \sqrt{5} }  -  \frac{3 \sqrt{2} }{ \sqrt{15} + 3 \sqrt{2}  }  = 1

Step-by-step explanation:

 \frac{7 \sqrt{3} }{ \sqrt{10} +  \sqrt{3}  }  -  \frac{2 \sqrt{5} }{ \sqrt{6}  +  \sqrt{5} }  -  \frac{3 \sqrt{2} }{ \sqrt{15} + 3 \sqrt{2}  }

Let us take conjugate (rationalise using denominator) for each term.

By rationalising the first term,

 \frac{7 \sqrt{3} }{ \sqrt{10} +  \sqrt{3}  }  \times  \frac{ \sqrt{10} -  \sqrt{3}  }{\sqrt{10} -  \sqrt{3}}

 \frac{7 \sqrt{30} - 21 }{7}  =  \sqrt{30}  - 3

By rationalising the second term,

 \frac{2 \sqrt{5} }{ \sqrt{6}  +  \sqrt{5} }  \times  \frac{ \sqrt{6 }  -  \sqrt{5} }{ \sqrt{6 }  -  \sqrt{5}}

 =  \frac{2 \sqrt{30} - 10 }{1}  = 2 \sqrt{30} - 10

By rationalising the third term,

 \frac{3 \sqrt{ 2} }{ \sqrt{15} + 3 \sqrt{2}  }  \times   \frac{ \sqrt{15}  -  3\sqrt{2} }{\sqrt{15}  -  3\sqrt{2}}

 =  \frac{3 \sqrt{30}  - 18}{ - 3}  = 6 -  \sqrt{30}

By subtracting the three rationalised answers, we get the answer,

\frac{7 \sqrt{3} }{ \sqrt{10} +  \sqrt{3}  }  -  \frac{2 \sqrt{5} }{ \sqrt{6}  +  \sqrt{5} }  -  \frac{3 \sqrt{2} }{ \sqrt{15} + 3 \sqrt{2}  }

 =  \sqrt{30}  - 3 - (2 \sqrt{30}  - 10) - (6 -  \sqrt{30} )

 =\sqrt{30}  - 3 - 2 \sqrt{30}  + 10 - 6 +  \sqrt{30}

 = 1

Answered by Mantsha4305
0

HEY DEAR ❗❗

FIRST WE HAVE TO RATIONALISE EACH TERM SEPARATELY.

(IT WOULD BE EASY TO SOLVE).

THEN, ADD THEM UP TOGETHER,

AS YOU CAN SEE IN THE ATTACHED PIC.

❤Thank you❤

Hope it helps ❗❗

Mark as BRAINLIEST, I really need BRAINLIEST answers to reach next rank.

Attachments:
Similar questions