Math, asked by reva2005mudgil, 9 months ago

Simplify the following
(2-¹×3²/2²×3‐⁴)⁷/²×(2-²×3³/2³×3-⁵)-⁵/²
(ans 12)​

Answers

Answered by MaheswariS
7

\textbf{Given:}

\mathsf{\left(\dfrac{2^{-1}{\times}3^2}{2^2{\times}3^{-4}}\right)^\frac{7}{2}{\times}\left(\dfrac{2^{-2}{\times}3^3}{2^3{\times}3^{-5}}\right)^\frac{-5}{2}}

\textbf{To simplify:}

\mathsf{\left(\dfrac{2^{-1}{\times}3^2}{2^2{\times}3^{-4}}\right)^\frac{7}{2}{\times}\left(\dfrac{2^{-2}{\times}3^3}{2^3{\times}3^{-5}}\right)^\frac{-5}{2}}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{\left(\dfrac{2^{-1}{\times}3^2}{2^2{\times}3^{-4}}\right)^\frac{7}{2}{\times}\left(\dfrac{2^{-2}{\times}3^3}{2^3{\times}3^{-5}}\right)^\frac{-5}{2}}

\mathsf{Using,\;\boxed{\dfrac{a^m}{a^n}=a^{m-n}}}

\mathsf{=\left(2^{-3}{\times}3^6\right)^\frac{7}{2}{\times}\left(2^{-5}{\times}3^8\right)^\frac{-5}{2}}

\mathsf{Using,\;\boxed{(ab)^m=a^m\;b^m}}

\mathsf{=2^\frac{-21}{2}{\times}3^{21}{\times}2^\frac{25}{2}{\times}3^{-20}}

\mathsf{Using,\;\boxed{a^m{\times}a^n=a^{m+n}}}

\mathsf{=2^{\frac{-21}{2}+\frac{25}{2}}{\times}3^1}

\mathsf{=2^\frac{4}{2}{\times}3^1}

\mathsf{=2^2{\times}3^1}

\mathsf{=4{\times}3^1}

\mathsf{=12}

\textbf{Answer:}

\mathsf{\left(\dfrac{2^{-1}{\times}3^2}{2^2{\times}3^{-4}}\right)^\frac{7}{2}{\times}\left(\dfrac{2^{-2}{\times}3^3}{2^3{\times}3^{-5}}\right)^\frac{-5}{2}=12}

Find more:

Simplify = 2^-5×15^-5×500÷5^-6×6^-5​

https://brainly.in/question/9428207

Answered by deepasonal984
0

Answer:

Step-by-step expla

nation:

Similar questions