Math, asked by VedanshiV, 7 months ago

simplify the following : (√3 + √2)^2​

Answers

Answered by aarush113
6

\huge\star{\underline{\mathtt{\red{A}\pink{N}\green{S}\blue{W}\purple{E}\orange{R}}}}⋆

(√3 + √2)²

Using the identity

(a+b)² = a²+b²+2ab

Here,

a=√3

b=√2

So,

(√3)² + (√2)² + 2 (√3×√2)

=3 + 2 + 2 (√6)

=3 + 2 + 2√6

Answered by Asterinn
2

  \implies{( \sqrt{3}  +  \sqrt{2} )}^{2}

We know that :-

{(a  +  b)}^{2}  =  {a}^{2}  +  {b}^{2} + 2ab

\implies{( \sqrt{3}  +  \sqrt{2} )}^{2}  =  { (\sqrt{3} )}^{2} +   { (\sqrt{2} )}^{2} +( 2 \times \sqrt{3} \times \sqrt{2})

\implies{( \sqrt{3}  +  \sqrt{2} )}^{2}  =3 + 2 +2\sqrt{6}

\implies{( \sqrt{3}  +  \sqrt{2} )}^{2}  =5+2\sqrt{6}

Answer :

5+2\sqrt{6}

____________________

\large\bf\red{Learn\:More}

\implies{(a+b)^2 = a^2 + b^2 + 2ab}

\implies{(a-b)^2 = a^2 + b^2 - 2ab}

\implies{(a+b)^3 = a^3 + b^3 + 3ab(a + b)}

\implies{(a-b)^3 = a^3 - b^3 - 3ab(a-b)}

\implies{(a^3+b^3)= (a+b)(a^2 - ab + b^2)}

\implies{(a^3-b^3)= (a-b)(a^2 + ab + b^2)}

_______________________

Similar questions