Math, asked by rounik30, 10 months ago

SIMPLIFY THE FOLLOWING:


3/2y^2(y^2-1)-3/4y(y^3-1)+1/4y^2(y^2+y)​

Answers

Answered by tanvichhabra29
2

Answer: 3/4y - 3/2y^2 + 1/4y^3 + y^4

Step-by-step explanation:

3/2y^2(y^2-1)-3/4y(y^3-1)+1/4y^2(y^2+y)

3/2y^4 - 3/2y^2 - 3/4y^4 + 3/4y +1/4y^4 + 1/4y^3

6-3+1/4y^4 - 3/2y^2 + 3/4y + 1/4y^3

3/4y - 3/2y^2 + 1/4y^3 + y^4

Mark the answer as brainliest....

Answered by qwblackurnrovers
0

Simplified value is \frac{1}{4} y^4 + \frac{1}{4} y^3 - \frac{3}{2} y^2 +\frac{3}{4} y

Given:

3/2y^2(y^2-1)-3/4y(y^3-1)+1/4y^2(y^2+y)​

To Find:

To get the value which is simplified from the above question

Solution:

3/2y^2(y^2-1)-3/4y(y^3-1)+1/4y^2(y^2+y)​

= \frac{3}{2} y^4 - \frac{3}{2} y^2 - \frac{3}{4} y^4 + \frac{3}{4} y + \frac{1}{4} y^4 + \frac{1}{4}y^3

= y^4( 3/2 - 3/4 + 1/4 ) + 1/4 y^3 - 3/2 y^2 +3/4y

Upon Simplifying ,

We get,

\frac{1}{4} y^4 + \frac{1}{4} y^3 - \frac{3}{2} y^2 +\frac{3}{4} y

Hence, the simplified value is \frac{1}{4} y^4 + \frac{1}{4} y^3 - \frac{3}{2} y^2 +\frac{3}{4} y

Similar questions