Math, asked by nasimshaikh, 11 months ago

simplify the following 3 root 16 + 3 root 54 + 3 root 192 minus 3 root 375​

Answers

Answered by Anonymous
55

hope this helps you.. :)

Attachments:
Answered by erinna
45

The simplified form of the given expression is 5\sqrt[3]{2}+9\sqrt[3]{3}.

Step-by-step explanation:

Consider the given expression is

\sqrt[3]{16}+\sqrt[3]{54}+\sqrt[3]{192}+\sqrt[3]{375}

We need to find the simplified form of the given expression.

The given expression can be rewritten as

\sqrt[3]{8\times 2}+\sqrt[3]{27\times 2}+\sqrt[3]{64\times 3}+\sqrt[3]{125\times 3}

\sqrt[3]{2^3\times 2}+\sqrt[3]{3^3\times 2}+\sqrt[3]{4^3\times 3}+\sqrt[3]{5^3\times 3}       [\because \sqrt[a]{x^a}=x]

On simplification we get

2\sqrt[3]{2}+3\sqrt[3]{2}+4\sqrt[3]{3}+5\sqrt[3]{3}

On combining like terms we get

5\sqrt[3]{2}+9\sqrt[3]{3}

Therefore, the simplified form of the given expression is 5\sqrt[3]{2}+9\sqrt[3]{3}.

#Learn more

Simplify :

\sqrt[4]{16} - 8 \sqrt[3]{125} +15 \sqrt[5]{32} +  \sqrt{576}

https://brainly.in/question/10521133

Similar questions
Math, 6 months ago