Math, asked by jennydcruzlovesbts, 1 month ago

simplify the following : ​

Attachments:

Answers

Answered by itzPapaKaHelicopter
3

\huge \fbox \orange{Solutions:}

1. \:  \sqrt{45}  - 3 \sqrt{20}  + 4√5

\sf \colorbox{pink} {Answer. 1}

\sqrt{45}  - 3 \sqrt{20}  + 4√5

 =  \sqrt{3 \times 3 \times 5}  - 3 \sqrt{2 \times 2 \times 5}  + 4 \sqrt{5}

 = 3 \sqrt{5}  - 3 \times 2 \sqrt{5} + 4 \sqrt{5}

 = 3 \sqrt{5}  - 6 \sqrt{5}  + 4 \sqrt{5}

 = 7 \sqrt{5}  - 6 \sqrt{5}

 =  \sqrt{5}

2. \:  \frac{ \sqrt{24} }{8}  +   \frac{ \sqrt{54} }{9}

\sf \colorbox{pink} {Answer. 2}

 \textbf{Given:}  \frac{ \sqrt{24} }{8}  +   \frac{ \sqrt{54} }{9}

Solution:

 = \frac{ \sqrt{24} }{8}  +   \frac{ \sqrt{54} }{9}

 =  \frac{ \sqrt{2 \times 2 \times 2 \times 3} }{8}  +  \frac{ \sqrt{2 \times 3 \times 3} }{9}

 ⇒ \frac{2 \sqrt{2 \times 3} }{8}  +  \frac{3 \sqrt{2 \times 3} }{9}  =  \frac{ \sqrt{6} }{4}  +   \frac{ \sqrt{6} }{3}

 ⇒  \sqrt{6}  \left(  \frac{1}{4}  +  \frac{1}{3} \right) \] =  \sqrt{6}  \times  \frac{7}{12}

 =  \frac{7}{12}  \sqrt{6}

3. \:  \:  \sqrt{3}  - 2 \sqrt{27}  +  \frac{7}{ \sqrt{3} }

\sf \colorbox{pink} {Answer. 3}

 \textbf{Given:} \sqrt{3}  - 2 \sqrt{27}  +  \frac{7}{ \sqrt{3} }

Solution:

⇒3 \sqrt{3}   -  2 \sqrt{27}  +  \frac{7}{ \sqrt{3} }

⇒3 \sqrt{3 }   -  6 \sqrt{3}  +  \frac{7}{ \sqrt{3} }

⇒9 \sqrt{3}  -  \frac{7}{ \sqrt{3} } =   \left( \frac{9 \sqrt{3} }{ \sqrt{3} }   \times  \sqrt{3} \right) \] +  \frac{7}{3}

⇒ \frac{27}{ \sqrt{3} }  +  \frac{7}{ \sqrt{3} }  =  \frac{34}{ \sqrt{3} }

4. \:  \sqrt[4]{81}  - 8 \sqrt[3]{216}  + 15 \sqrt[5]{32}  +  \sqrt{225}

\sf \colorbox{pink} {Answer .4 }

 \textbf{Given:} \sqrt[4]{81}  - 8 \sqrt[3]{216}  + 15 \sqrt[5]{32}  +  \sqrt{225}

Solution:

 =  \sqrt[4]{ {3}^{4} }  - 8

 =   \sqrt[3]{ {6}^{3} }  + 15

 =  \sqrt[5]{ {2}^{5} }  +  \sqrt{ {15}^{2} }

 = 3 - 8 \times 6 + 15 \times 2 + 15

 = 3 - 48 + 30 + 15 = 0

 \\  \\  \\

Please do not report if the answer is wrong, we have tried our best to give you the correct answer

 \\  \\  \\  \\  \\  \\  \\ \sf \colorbox{gold} {\red(ANSWER ᵇʸ ⁿᵃʷᵃᵇ⁰⁰⁰⁸}

Similar questions
Math, 8 months ago