Math, asked by mananpithisaria92, 2 months ago

simplify the following ​

Attachments:

Answers

Answered by ITZSARCATICVAMPIRE
3

 \frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  -  \frac{7 - 3 \sqrt{5} }{3 -  \sqrt{5} }

⇒( {3)}^{2}  -  {( \sqrt{5})}^{2}

Taking the LCM = Multiplying the denominator

Using the identity of a²-b² = (a+b)(a-b)

⇒( {3})^{2}  - ( { \sqrt{5} })^{2}

⇒ 9 - 5

⇒4

A/q ,

\frac{(7 + 3 \sqrt{5}) \times (3 -  \sqrt{5} ) }{4}  -  \frac{(7 - 3 \sqrt{5} )(3 +  \sqrt{5}) }{4}

⇒\frac{7(3  -  \sqrt{5}) + 3 \sqrt{5} (3 -  \sqrt{5} ) }{4}  -  \frac{7(3   + \sqrt{5})  -  3 \sqrt{5} (3  +  \sqrt{5} ) }{4}

⇒ \frac{21 - 7 \sqrt{5} + 9 \sqrt{5} - (3 \times 5)  }{4}  -  \frac{21 + 7 \sqrt{5}  - 9 \sqrt{5}  - (3 \times 5) }{4}

⇒ \frac{21 - 7 \sqrt{5} + 9 \sqrt{5} - 15  }{4}  -  \frac{21 + 7 \sqrt{5}  - 9 \sqrt{5}  -  15}{4} </p><p>

⇒ \frac{21 - 7 \sqrt{5} + 9 \sqrt{5} - 15 - 21 - 7 \sqrt{5}  + 9 \sqrt{5}   + 15  }{4}

⇒\frac{21 - 21 + 15 - 15 - 7 \sqrt{5}  - 7 \sqrt{5} + 9 \sqrt{5}  + 9 \sqrt{5}  }{4}

⇒ \frac{  - 7 \sqrt{5} - 7 \sqrt{5} + 9 \sqrt{5}  + 9 \sqrt{5}   }{4}

⇒  \frac{ 18 \sqrt{5}  - 14 \sqrt{5}  }{4}

now \: taking \:  \sqrt{5}  \: as \: common

⇒  \frac{\sqrt{5} \:  (18 - 14)}{4}

⇒  \frac{4 \sqrt{5} }{4}

⇒ \sqrt{5}

\pink{\large\mathfrak {Hope \:  it \:  helps \:  you}}

Similar questions