Math, asked by maheshbhujel1971, 3 months ago

simplify the following​

Attachments:

Answers

Answered by akeertana503
1

\\: \large\pink꧁ \green{{\underline{\red{ \underline{\purple{\overline{\orange{\overline{ \huge\blue{Answer࿐}}}}}}}}}} \pink꧂

plz see the answer in attachment..

foll ow n like it

Attachments:
Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given

\rm :\longmapsto\:\dfrac{1}{2 +  \sqrt{3} }  + \dfrac{2}{ \sqrt{5} -  \sqrt{3}  }  + \dfrac{1}{2 -  \sqrt{5} }  -  - (1)

Consider,

\red{\bf :\longmapsto\:\dfrac{1}{2 +  \sqrt{3}}}

★ On rationalizing the denominator, we get

 \rm \:  \:  =  \: \dfrac{1}{2  +   \sqrt{3} }  \times \dfrac{2  -   \sqrt{3} }{2  -  \sqrt{3} }

 \rm \:  \:  =  \: \dfrac{2 -  \sqrt{3} }{ {2}^{2}  -  {( \sqrt{3} ) \: }^{2} }

 \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:(x + y)(x - y) =  {x}^{2} -  {y}^{2}  \bigg \}}

 \rm \:  \:  =  \: \dfrac{2 -  \sqrt{3} }{4 - 3}

 \rm \:  \:  =  \: \dfrac{2 -  \sqrt{3} }{1}

 \rm \:  \:  =  \: 2 -  \sqrt{3}

\red{\bf :\longmapsto\:\dfrac{1}{2 +  \sqrt{3}} = 2 -  \sqrt{3} -  -  - (2) }

Consider,

 \blue{ \bf{ \longmapsto \: \dfrac{2}{ \sqrt{5}  -  \sqrt{3} } }}

★ On rationalizing the denominator, we get

 \rm \:  \:  =  \: \dfrac{2}{ \sqrt{5}  -  \sqrt{3} }  \times \dfrac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  +  \sqrt{3} }

 \rm \:  \:  =  \: \dfrac{2( \sqrt{5} +  \sqrt{3})}{ {( \sqrt{5} )}^{2}  -  {( \sqrt{3} )}^{2} }

 \:  \:  \:  \:  \:  \: \blue{\bigg \{ \because \:(x + y)(x - y) =  {x}^{2} -  {y}^{2}  \bigg \}}

 \rm \:  \:  =  \: \dfrac{2( \sqrt{5} +   \sqrt{3})}{5 - 3}

 \rm \:  \:  =  \: \dfrac{2( \sqrt{5} +   \sqrt{3})}{2}

 \rm \:  \:  =  \:  \sqrt{5}  +  \sqrt{3}

 \blue{ \bf{ \longmapsto \: \dfrac{2}{ \sqrt{5}  -  \sqrt{3} } } =  \sqrt{5}  +  \sqrt{3} -  - (3) }

Consider,

 \purple{ \bf{ \longmapsto \: \dfrac{1}{2 -  \sqrt{5} } }}

★ On rationalizing the denominator, we get

 \rm \:  \:  =  \: \dfrac{1}{2 -  \sqrt{5} }  \times \dfrac{2 +  \sqrt{5} }{2 +  \sqrt{5} }

 \rm \:  \:  =  \: \dfrac{2 +  \sqrt{5} }{ {2}^{2}  -  {( \sqrt{5} )}^{2} }

 \:  \:  \:  \:  \:  \: \purple{\bigg \{ \because \:(x + y)(x - y) =  {x}^{2} -  {y}^{2}  \bigg \}}

 \rm \:  \:  =  \: \dfrac{2 +  \sqrt{5} }{4 - 5}

 \rm \:  \:  =  \: \dfrac{2 +  \sqrt{5} }{ - 1}

 \rm \:  \:  =  \:  - 2 -  \sqrt{5}

 \purple{ \bf{ \longmapsto \: \dfrac{1}{2 -  \sqrt{5} } } =  - 2 -  \sqrt{5}  -  -  - (4)}

★ Now, Substituting all the values from equation (2), (3) and (4) in equation (1), we get

 \green{\bf :\longmapsto\:\dfrac{1}{2 +  \sqrt{3} }  + \dfrac{2}{ \sqrt{5} -  \sqrt{3}  }  + \dfrac{1}{2 -  \sqrt{5} } }

 \rm \:  \:  =  \: 2 -  \sqrt{3} +  \sqrt{5}  +  \sqrt{3}  - 2 -  \sqrt{5}

 \rm \:  \:  =  \: 0

Hence,

 \green{\bf :\longmapsto\:\dfrac{1}{2 +  \sqrt{3} }  + \dfrac{2}{ \sqrt{5} -  \sqrt{3}  }  + \dfrac{1}{2 -  \sqrt{5} } = 0 }

More Identities to know:

★ (a + b)² = a² + 2ab + b²

★ (a - b)² = a² - 2ab + b²

★ a² - b² = (a + b)(a - b)

★ (a + b)² = (a - b)² + 4ab

★ (a - b)² = (a + b)² - 4ab

★ (a + b)² + (a - b)² = 2(a² + b²)

★ (a + b)³ = a³ + b³ + 3ab(a + b)

★ (a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions