Math, asked by supriya1918, 1 month ago

simplify the following​

Attachments:

Answers

Answered by itsPapaKaHelicopter
2

\sf \colorbox{pink} {Ans.a}

\sf \colorbox{god} {Given:-} \:  \frac{ {3}^{4} \times ( - 5 {)}^{ - 4}  }{9 \times ( {5}^{2}  {)}^{3} }

\text{To Find:- Value}

\sf \colorbox{god} {Formula:- } ( {a}^{ - m}  =  \frac{1}{ {a}^{m} } )

Solve:-

⇒ \frac{ {3}^{4}  \times 1}{ {3}^{2} \times (5 {)}^{6}  \times ( - 5 {)}^{4}  }

⇒ \frac{ {3}^{4}  \times 1}{ {3}^{2}  \times (5 {)}^{6}  \times ( - 5 {)}^{4} }

⇒  \frac{ {3}^{4 - 2} }{(5 {)}^{6} \times ( - 1 {)}^{4} (5 {)}^{4}  }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ( {a}^{ - m}  =  \frac{1}{ {a}^{m} } )

⇒ \frac{ {3}^{2} }{(5 {)}^{6 + 4}  \times 1}  =  \frac{ {3}^{2} }{ {5}^{10} }

\sf \colorbox{pink} {Ans.c}

\sf \colorbox{god} {Given:-} \frac{ {3}^{0}  + ( {5}^{2}  {)}^{3} -  {6}^{2}  }{( {3}^{2} {)}^{3}   \times  {5}^{2} }

\text{To Find:- Value}

Solve:-

⇒\frac{ {3}^{0}  + ( {5}^{2}  {)}^{3} -  {6}^{2}  }{( {3}^{2} {)}^{3}   \times  {5}^{2} }  =  \frac{1 +  {5}^{6}  -  {6}^{2} }{ {3}^{6} \times  {5}^{2}  }

[\sf \colorbox{god} {➧Using}( {a}^{m}  {)}^{n}  =  {a}^{m \times n} ]

⇒ \frac{1 + 15625 - 36}{729 \times 25}  =  \frac{15590}{18225}

 = 3118/3645

 \\  \\  \\  \\ \sf \colorbox{lightgreen} {\red★ANSWER ᵇʸɴᴀᴡᴀʙ}

Similar questions