Math, asked by ishma56, 1 month ago

simplify the following​

Attachments:

Answers

Answered by MrImpeccable
29

ANSWER:

To Simplify:

\:\:\:\bullet\:\:\:\left(a^{\dfrac{1}{x-y}}\right)^{\dfrac{1}{x-z}}\times\left(a^{\dfrac{1}{y-z}}\right)^{\dfrac{1}{y-x}}\times\left(a^{\dfrac{1}{z-x}}\right)^{\dfrac{1}{z-y}}

Solution:

We are given that,

\implies\left(a^{\dfrac{1}{x-y}}\right)^{\dfrac{1}{x-z}}\times\left(a^{\dfrac{1}{y-z}}\right)^{\dfrac{1}{y-x}}\times\left(a^{\dfrac{1}{z-x}}\right)^{\dfrac{1}{z-y}}

We know that,

\hookrightarrow (p^q)^r=p^{qr}

So,

\implies\left(a^{\dfrac{1}{x-y}}\right)^{\dfrac{1}{x-z}}\times\left(a^{\dfrac{1}{y-z}}\right)^{\dfrac{1}{y-x}}\times\left(a^{\dfrac{1}{z-x}}\right)^{\dfrac{1}{z-y}}

\implies\left(a^{\dfrac{1}{x-y}\times\dfrac{1}{x-z}}\right)\times\left(a^{\dfrac{1}{y-z}\times\dfrac{1}{y-x}}\right)\times\left(a^{\dfrac{1}{z-x}\times\dfrac{1}{z-y}}\right)

So,

\implies\left(a^{\dfrac{1}{(x-y)(x-z)}}\right)\times\left(a^{\dfrac{1}{(y-z)(y-x)}}\right)\times\left(a^{\dfrac{1}{(z-x)(z-y)}}\right)

We know that,

\hookrightarrow p^q\times p^r=p^{q+r}

So,

\implies\left(a^{\dfrac{1}{(x-y)(x-z)}}\right)\times\left(a^{\dfrac{1}{(y-z)(y-x)}}\right)\times\left(a^{\dfrac{1}{(z-x)(z-y)}}\right)

\implies a^{\dfrac{1}{(x-y)(x-z)}+\dfrac{1}{(y-z)(y-x)}+\dfrac{1}{(z-x)(z-y)}}

\implies a^{\dfrac{1}{(x-y)(x-z)}-\dfrac{1}{(y-z)(x-y)}+\dfrac{1}{(x-z)(y-z)}}

Taking LCM,

\implies a^{\dfrac{1}{(x-y)(x-z)}-\dfrac{1}{(y-z)(x-y)}+\dfrac{1}{(x-z)(y-z)}}

\implies a^{\dfrac{(y-z)-(x-z)+(x-y)}{(x-y)(y-z)(x-z)}}

\implies a^{\dfrac{y\!\!\!/\:-z\!\!\!/\:-x\!\!\!/\:+z\!\!\!/\:+x\!\!\!/\:-y\!\!\!/\:}{(x-y)(y-z)(x-z)}}

\implies a^{\dfrac{0}{(x-y)(y-z)(x-z)}}

So,

\implies a^0

Hence,

\implies\bf 1

Therefore,

\implies\bf\left(a^{\frac{1}{x-y}}\right)^{\frac{1}{x-z}}\times\left(a^{\frac{1}{y-z}}\right)^{\frac{1}{y-x}}\times\left(a^{\frac{1}{z-x}}\right)^{\frac{1}{z-y}}=1

Answered by CoruscatingGarçon
2

Answer:

the value of the given expression is 1.

#Be Brainly

Hope it helps!!

Similar questions