Math, asked by swatisharma2858, 1 year ago

simplify the following: √5-2/√5+ 2 ÷√5 + 2/ √5- 2

Attachments:

Answers

Answered by bhoomiarora2071
4

First we rationalise both term separately. Then at numerator use second and first identity respectively. Then at denominator we use third identity.

Hope its help u..

Attachments:

swatisharma2858: thanks but there is a mistake
swatisharma2858: in last 2nd and 3rd line
swatisharma2858: and thanks
Answered by BrainlyQueen01
20

Hi there !



______________________________



Given :



 \bold{ \huge{ \frac{ \sqrt{5} - 2 }{ \sqrt{5} + 2 } - \frac{ \sqrt{5} + 2 }{ \sqrt{5} - 2 } }}




Solution ;



On rationalising it's denominator :




</p><br /><p>\frac{ \sqrt{5} - 2 }{ \sqrt{5} + 2 } - \frac{ \sqrt{5} + 2 }{ \sqrt{5} - 2 } \\ \\ \frac{ \sqrt{5} - 2 }{ \sqrt{5} + 2 } \times \frac{ \sqrt{5} - 2 }{ \sqrt{5} - 2 } - \frac{ \sqrt{5} + 2 }{ \sqrt{5} - 2 } \times \frac{ \sqrt{5} + 2 }{ \sqrt{5} + 2 } \\ \\ \frac{( \sqrt{5} - 2) {}^{2} }{( \sqrt{5}) {}^{2} - (2) {}^{2} } - \frac{( \sqrt{5} + 2) {}^{2} }{( \sqrt{5}) {}^{2} - (2) {}^{2} } \\ \\ \frac{5 + 4 - 4 \sqrt{5} }{5 - 4} - \frac{5 + 4 + 4 \sqrt{5} }{5 - 4} \\ \\ \frac{9 - 4 \sqrt{5} }{1} - \frac{9 + 4 \sqrt{5} }{1} \\ \\ \cancel9 - 4 \sqrt{5} - \cancel 9 - 4 \sqrt{5} \\ \\ \bold{ \huge {- 8 \sqrt{5} }}




______________________________




Thanks for the question !


swatisharma2858: thanks
BrainlyQueen01: Welcome :)
Similar questions