Math, asked by ASM0631AKSM3206, 1 year ago

simplify the following

Attachments:

Answers

Answered by BraɪnlyRoмan
17
 \huge \boxed{ \underline{ \underline{ \bf{ Question }}}}


 \bf{ To \: Solve \: : \: \frac{ {3}^{ - 5} \times {10}^{ - 4} \times {5}^{4} }{ {5}^{2} \times {6}^{ - 5} } }


\huge \boxed{ \underline{ \underline{ \bf{Answer}}}}


 = \: \frac{ {3}^{ - 5} \times {10}^{ - 4} \times {5}^{4} }{ {5}^{2} \times {6}^{ - 5} }

 = \: \frac{ {3}^{ - 5} \times ( {5}^{ - 4} \times \: {2}^{ - 4}) \times {5}^{4} }{ {5}^{2} \times {6}^{ - 5} }

 = \: \frac{ {3}^{ - 5} \times {5}^{ - 4} \times {5}^{4} \times {2}^{ - 4} }{ {5}^{2} \times ( {2}^{ - 5} \times {3}^{ - 5}) }

 = \: \frac{ {3}^{ - 5} \times {5}^{( - 4 + 4)} \times {2}^{ - 4} }{ {5}^{2} \times {2}^{ -5 }\times {3}^{ - 5} } \: \: \: (using \: identity \: : {x}^{a} \times {x}^{b} = {x}^{(a + b)} )

 = \frac{ {3}^{ - 5} \times \: {5}^{0} \: \times \: {2}^{ - 4} }{ {5}^{2} \times \: {2}^{ - 5} \times {3}^{ - 5} }

 = \: \frac{ {5}^{0} \: \times \: {2}^{ - 4} }{ {5}^{2} \times \: {2}^{ - 5} }

 = {5}^{0 - 2} \times {2}^{ (- 4) - ( - 5)} \: \: \: \: \: \: \: \: \: \:( using \: \frac{ {x}^{a} }{ {x}^{b}} = {x}^{(a - b)} )

 = {5}^{ - 2} \: \times \: {2}^{ 1}

 = \: {5}^{ - 2} \: \times 2

 = \: 0.04 \: \times 2

 = \: 0.08


Swarup1998: Nice work!
Similar questions